985 resultados para Differential Equation
Resumo:
Cognitive impairments are currently regarded as important determinants of functional domains and are promising treatment goals in schizophrenia. Nevertheless, the exact nature of the interdependent relationship between neurocognition and social cognition as well as the relative contribution of each of these factors to adequate functioning remains unclear. The purpose of this article is to systematically review the findings and methodology of studies that have investigated social cognition as a mediator variable between neurocognitive performance and functional outcome in schizophrenia. Moreover, we carried out a study to evaluate this mediation hypothesis by the means of structural equation modeling in a large sample of 148 schizophrenia patients. The review comprised 15 studies. All but one study provided evidence for the mediating role of social cognition both in cross-sectional and in longitudinal designs. Other variables like motivation and social competence additionally mediated the relationship between social cognition and functional outcome. The mean effect size of the indirect effect was 0.20. However, social cognitive domains were differentially effective mediators. On average, 25% of the variance in functional outcome could be explained in the mediation model. The results of our own statistical analysis are in line with these conclusions: Social cognition mediated a significant indirect relationship between neurocognition and functional outcome. These results suggest that research should focus on differential mediation pathways. Future studies should also consider the interaction with other prognostic factors, additional mediators, and moderators in order to increase the predictive power and to target those factors relevant for optimizing therapy effects.
Resumo:
We characterize the chaos in a fractional Duffing’s equation computing the Lyapunov exponents and the dimension of the strange attractor in the effective phase space of the system. We develop a specific analytical method to estimate all Lyapunov exponents and check the results with the fiduciary orbit technique and a time series estimation method.
Resumo:
Kinetics of 1,3-dipolar cycloaddition involving azomethine ylides, generated from thermal [1,2]-prototropy of the corresponding imino ester, employing differential scanning calorimetry (DSC), is surveyed. Glycine and phenylalanine derived imino esters have different behavior. The first one prefers reacting with itself at 75 ºC, rather than with the dipolarophile. However, the α-substituted imino ester gives the cycloadduct at higher temperatures. The thermal dynamic analysis by 1H NMR of the neat reaction mixture of the glycine derivative reveals the presence of signals corresponding to the dipole in very small proportion. The non-isothermal and isothermal DSC curves of the cycloaddition of phenylalaninate and diisobutyl fumarate are obtained from freshly prepared samples. The application of known kinetic models and mathematical multiple non-linear regressions (NLR) allow to determine and to compare Ea, lnA, reaction orders, and reaction enthalpy. Finally a rate equation for each different temperature can be established for this particular thermal cycloaddition.
Resumo:
Includes bibliography.
Gelatinisation of starch in mixtures of sugars. II. Application of differential scanning calorimetry
Resumo:
Differential scanning calorimetry was used to investigate the effect of mixtures of glucose and fructose, and five types of honeys on starch gelatinisation. At a 1:1 starch:water ratio, glucose generally increased the enthalpy (DeltaH(gel)) and temperatures (T-onset, T-peak and T-end) of gelatinisation more than fructose. Upon mixing, DeltaH(gel) of the low-temperature endotherm decreased in comparison to the sole sugars, but was fairly constant (7.7 +/- 0.33 J/g dry starch). DeltaH(gel) of the high-temperature endotherm increased with the fructose content. For both endotherms, the gelatinisation temperatures were unchanged (CV less than or equal to 3%) for the mixtures. With the honeys (moisture, 14.9-18.0%; fructose, 37.2-44.0%; glucose, 28.3-31.9%) added at 1.1-4.4 g per g dry starch, the enthalpy and temperatures of gelatinisation did not vary significantly (CV less than or equal to 6%). Typical thermograms are presented, and the results are interpreted in the light of the various proposed mechanisms for starch gelatinisation in sugar-water systems, total sugar content and possible sugar-sugar interactions. The thermograms were broader in the presence of the sugars and honeys, and a biphasic character was consistently exhibited. The application of an exponential equation to the gelatinisation temperatures of the starch-honey mixtures revealed an opposing influence of fructose and glucose during gelatinisation. The mechanism of starch gelatinisation may be better understood if techniques could be perfected to quantify breakage and formation of hydrogen bonds in the starch granules, and suggested techniques are discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
Resumo:
Modulated temperature differential scanning calorimetry was used to investigate the specific heat capacity (C-p) of 10 Australian honeys within the processing and handling temperatures. The values obtained were found to be different from the literature values at certain temperatures, and are not predictable by the additive model. The C-p of each honey exhibited a cubic relationship (P < 0.001) with the temperature (T, C). In addition, the moisture (M, %), fructose (F, %) and glucose (G, %) contents of the honeys influenced their C-p. The following equation (r(2) = 0.92) was proposed for estimating C-p of honey, and is recommended for use in the honey industry and in research: C = 996.7 + 1.4 x 10(-3)T + 5.6 x 10(-5)T(2) - 2.4 x 10(-7)T(3) - 56.5M - 25.8F - 31.0G + 1.5(M * F) + 1.8(M * G) + 0.8(F * G) - 4.6 x 10(-2) (M * F * G).
Resumo:
Time delay is an important aspect in the modelling of genetic regulation due to slow biochemical reactions such as gene transcription and translation, and protein diffusion between the cytosol and nucleus. In this paper we introduce a general mathematical formalism via stochastic delay differential equations for describing time delays in genetic regulatory networks. Based on recent developments with the delay stochastic simulation algorithm, the delay chemical masterequation and the delay reaction rate equation are developed for describing biological reactions with time delay, which leads to stochastic delay differential equations derived from the Langevin approach. Two simple genetic regulatory networks are used to study the impact of' intrinsic noise on the system dynamics where there are delays. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
First-year undergraduate engineering students' understanding of the units of factors and terms in first-order ordinary differential equations used in modelling contexts was investigated using diagnostic quiz questions. Few students appeared to realize that the units of each term in such equations must be the same, or if they did, nevertheless failed to apply that knowledge when needed. In addition, few students were able to determine the units of a proportionality factor in a simple equation. These results indicate that lecturers of modelling courses cannot take this foundational knowledge for granted and should explicitly include it in instruction.
Resumo:
A novel direct integration technique of the Manakov-PMD equation for the simulation of polarisation mode dispersion (PMD) in optical communication systems is demonstrated and shown to be numerically as efficient as the commonly used coarse-step method. The main advantage of using a direct integration of the Manakov-PMD equation over the coarse-step method is a higher accuracy of the PMD model. The new algorithm uses precomputed M(w) matrices to increase the computational speed compared to a full integration without loss of accuracy. The simulation results for the probability distribution function (PDF) of the differential group delay (DGD) and the autocorrelation function (ACF) of the polarisation dispersion vector for varying numbers of precomputed M(w) matrices are compared to analytical models and results from the coarse-step method. It is shown that the coarse-step method achieves a significantly inferior reproduction of the statistical properties of PMD in optical fibres compared to a direct integration of the Manakov-PMD equation.
Well-Posedness of the Cauchy Problem for Inhomogeneous Time-Fractional Pseudo-Differential Equations
Resumo:
Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12
Resumo:
Mathematics Subject Classification: 35J05, 35J25, 35C15, 47H50, 47G30
Resumo:
A dichotomysimilar property for a class of homogeneous differential equations in an arbitrary Banach space is introduced. By help of them, existence of quasi bounded solutions of the appropriate nonhomogeneous equation is proved.
Resumo:
MSC 2010: 34A08 (main), 34G20, 80A25