716 resultados para Dietary Astaxanthin
Resumo:
Interest in effects of diet on postprandial lipoproteins has increased in recent years as a result of accumulating evidence for adverse cardiovascular consequences of elevated concentrations of triglyceride rich lipoproteins. Particular attention has been given to ability of different fatty acids to modulate postprandial lipoprotein responses because of evidence for both harmful and protective cardiovascular properties of the saturated, monounsaturated and ω-6 and ω-3 polyunsaturated fatty acid (PUFA) classes. Evidence for direct atherogenic properties of chylomicron remnants has led to attempts to monitor effects of diet specifically on this lipoprotein class. Limitations in the methods employed to measure chylomicron remnants and the small number of human studies which have evaluated effects of meal, and background diet, fatty acid composition, makes it difficult to draw definitive conclusions at the present time. However consideration of data from both animal and human studies tends to support the conclusion that diets, and meals, rich in PUFA (particularly long chain ω-3 PUFA), result in attenuated postprandial responses of the intestinally-derived lipoproteins. Attenuated responses to high PUFA meals appear to be due to greater rates of clearance and greater activation of lipoprotein lipase (LPL). Attenuated responses to high PUFA background diets may be due to adaptive changes involving both accelerated rates of clearance in peripheral tissues and liver, as well as decreased output of the competitor for chylomicron clearance, very low density lipoprotein (VLDL).
Resumo:
Objective: SNPs identified from genome wide association studies associate with lipid risk markers of cardiovascular disease. This study investigated whether these SNPs altered the plasma lipid response to diet in the ‘RISCK’ study cohort. Methods: Participants (n = 490) from a dietary intervention to lower saturated fat by replacement with carbohydrate or monounsaturated fat, were genotyped for 39 lipid-associated SNPs. The association of each individual SNP, and of the SNPs combined (using genetic predisposition scores), with plasma lipid concentrations was assessed at baseline, and on change in response to 24 weeks on diets. Results: The associations between SNPs and lipid concentrations were directionally consistent with previous findings. The genetic predisposition scores were associated with higher baseline concentrations of plasma total(P = 0.02) and LDL (P = 0.002) cholesterol, triglycerides (P = 0.001) and apolipoprotein B (P = 0.004), and with lower baseline concentrations of HDL cholesterol (P < 0.001) and apolipoprotein A-I (P < 0.001). None of the SNPs showed significant association with the reduction of plasma lipids in response to the dietary interventions and there was no evidence of diet-gene interactions. Conclusion: Results from this exploratory study have shown that increased genetic predisposition was associated with an unfavourable plasma lipid profile at baseline, but did not influence the improvement in lipid profiles by the low-saturated-fat diets.
Resumo:
The effects on the intestinal microbiota of a short period of marginal over-eating, characteristic of holiday or festival periods, were investigated in a pilot study. Fourteen healthy male subjects consumed a diet rich in animal protein and fat for seven days. During this period, the subjects significantly increased their dietary energy, protein, carbohydrate and fat intakes by 56, 59, 53 and 58%, respectively (all P < 0.05). The mean weight gain of 0.27 kg was less than the expected 1 kg, but this was consistent with a degree of under-reporting on the baseline diet. Fluorescence in situ hybridisation analysis confirmed the relative stability of each individual’s faecal microbiota but showed considerable variations between them. The diet was associated with a significant increase in numbers of total faecal bacteria and the bacteroides group, as detected by the universal bacterial probe (DAPI) and Bacteroides probe (Bac 303), respectively. Overall, there was a decrease in numbers of the Lactobacillus/Enterococcus group (Lab 158 probe; 2.8 ± 3.0% to 1.8 ± 1.8%) and the Bifidobacterium group (Bif 164 probe; 3.0 ± 3.7% to 1.7 ± 1.2%), although there was considerable inter-individual variation. Analysis of the relative proportions of each bacterial group as a percentage of the subject’s total bacteria showed a trend for a change in the intestinal microbiota that might be considered potentially unhealthy.
Resumo:
Phyto-oestrogens have been associated with a decreased risk for osteoporosis, but results from intervention and observational studies in Western countries have been inconsistent. In the present study, we investigated the association between habitual phyto-oestrogen intake and broadband ultrasound attenuation (BUA) of the calcanaeum as a marker of bone density. We collected 7 d records of diet, medical history and demographic and anthropometric data from participants (aged 45–75 years) in the European Prospective Investigation into Cancer-Norfolk study. Phyto-oestrogen (biochanin A, daidzein, formononetin; genistein, glycitein; matairesinol; secoisolariciresinol; enterolactone; equol) intake was determined using a newly developed food composition database. Bone density was assessed using BUA of the calcanaeum. Associations between bone density and phyto-oestrogen intake were investigated in 2580 postmenopausal women who were not on hormone replacement therapy and 4973 men. Median intake of total phyto-oestrogens was 876 (interquartile range 412) μg/d in postmenopausal women and 1212 (interquartile range 604) μg/d in men. The non-soya isoflavones formononetin and biochanin A were marginally significant or significantly associated with BUA in postmenopausal women (β = 1·2; P < 0·1) and men (β = 1·2; P < 0·05), respectively; enterolignans and equol were positively associated with bone density in postmenopausal women, but this association became non-significant when dietary Ca was added to the model. In the lowest quintile of Ca intake, soya isoflavones were positively associated with bone density in postmenopausal women (β = 1·4; P < 0·1). The present results therefore suggest that non-soya isoflavones are associated with bone density independent of Ca, whereas the association with soya or soya isoflavones is affected by dietary Ca.
Resumo:
The objective of this study was to determine the concentration of total selenium (Se) and proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the tissues of female turkeys offered diets containing graded additions of selenized-enriched yeast (SY), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of breast and thigh muscle were assessed at 0 and 10 days post mortem. A total of 216 female turkey poults were enrolled in the study. A total of 24 birds were euthanized at the start of the study and samples of blood, breast, thigh, heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments(n548 birds/treatment) that differed either in Se source (SY v. SS) or dose (Con [0.2 mg/kg total Se], SY-L and SS-L [0.3mg/kg total Se as SY and SS, respectively] and SY-H [0.45mg total Se/kg]). Following 42 and 84 days of treatment 24 birds per treatment were euthanized and samples of blood, breast, thigh, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in breast and thigh tissue at the end of the study. There were responses (P,0.001) in all tissues to the graded addition of dietary Se, although rates of accumulation were highest in birds offered SY. There were notable differences between tissue types and treatments in the distribution of SeMet and SeCys, and the activity of tissue and erythrocyte GSH-Px (P,0.05). SeCys was the predominant form of Se in visceral tissue and SeMet the predominant form in breast tissue. SeCys contents were greater in thigh when compared with breast tissue. Muscle tissue GSH-Px activities mirrored SeCys contents. Despite treatment differences in tissue GSH-Px activity, there were no effects of treatment on any meat quality parameter.
Resumo:
This chapter compares the risks of chronic disease, and cardiovascular disease in particular, associated with consumption of different saturated fatty acids. Emphasis is placed on the effects of stearic acid as this has potential to replace trans fatty acids in certain manufactured food products. The chapter first reviews the effects of individual saturated fatty acids on blood lipids, including cholesterol, as these are commonly used as markers of disease risk. It then looks directly at evidence in relation to health outcomes. Finally, recent evidence specifically on the effect of stearic acid relative to other fatty acids, including trans fatty acids, is summarised.
Resumo:
Lambs (n = 48) were used in a 2 × 2 factorial arrangement of treatments to evaluate effects of inclusion of oil containing PUFA in high-concentrate diets (with or without) and duration of oil supplementation (pre- vs. postweaning) on CLA concentration of muscle and adipose tissue. Lambs were fed preweaning creep diets (with or without oil) corresponding to the dietary lactation treatment diet (with or without oil) of the dam. Dams blocked by lambing date and rearing type were randomly assigned to 1 of 2 lactation dietary treatments with or without oil supplementation. Creep diets contained approximately 70% concentrate and 30% roughage and were provided to lambs for ad libitum intake. At weaning (58.7 ± 2.5 d of age), lambs (n = 48) were randomly assigned within preweaning treatment groups to 1 of 2 postweaning dietary treatments (with or without oil) and 16 pens in a randomized block design, blocked by sex and BW. Postweaning diets were formulated to contain approximately 80% concentrate and 20% roughage and were fed once daily for ad libitum intake. Soybean and linseed oil (2:1, respectively) replaced ground corn and provided 3% additional fat in pre- and postweaning diets. Lambs were slaughtered at 60.3 ± 4.2 kg of BW. A subcutaneous fat (SQ) sample was obtained within 1 h postmortem and a LM sample at the 12th rib was obtained 24 h postmortem, and both were analyzed for fatty acid profile. Feedlot performance and carcass measurements were not affected (P ≥ 0.26) by oil supplementation. Total CLA content of LM and SQ was not affected (P ≥ 0.08) by oil supplementation pre- or postweaning, but trans-10, cis-12 CLA was greater (P = 0.02) in SQ from lambs supplemented with oil postweaning. Total PUFA content in LM was greater (P = 0.02) in lambs supplemented with oil pre- or postweaning as a result of increased concentrations of 18:2cis-9, cis-12 and longer chain PUFA. Conversely, pre- and postweaning oil supplementation resulted in less (P = 0.04) MUFA content in LM. Only postweaning oil supplementation increased (P = 0.001) SQ PUFA content. Feeding oils containing PUFA to lambs pre- and postweaning did not increase CLA content of muscle, whereas postweaning oil supplementation minimally increased CLA concentration of SQ fat. Inclusion of soybean and linseed oil in pre- and postweaning diets increased total PUFA content of SQ fat and muscle tissue without adversely affecting growth performance or carcass characteristics.
Resumo:
Background: Adiponectin gene expression is modulated by peroxisome proliferator–activated receptor γ, which is a transcription factor activated by unsaturated fatty acids. Objective: We investigated the effect of the interaction between variants at the ADIPOQ gene locus, age, sex, body mass index (BMI), ethnicity, and the replacement of dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) or carbohydrates on serum adiponectin concentrations. Design: The RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) study is a parallel-design, randomized controlled trial. Serum adiponectin concentrations were measured after a 4-wk high-SFA (HS) diet and a 24-wk intervention with reference (HS), high-MUFA (HM), and low-fat (LF) diets. Single nucleotide polymorphisms at the ADIPOQ locus −11391 G/A (rs17300539), −10066 G/A (rs182052), −7734 A/C (rs16861209), and +276 G/T (rs1501299) were genotyped in 448 participants. Results: In white Europeans, +276 T was associated with higher serum adiponectin concentrations (n = 340; P = 0.006) and −10066 A was associated with lower serum adiponectin concentrations (n = 360; P = 0.03), after adjustment for age, BMI, and sex. After the HM diet, −10066 G/G subjects showed a 3.8% increase (95% CI: −0.1%, 7.7%) and G/A+A/A subjects a 2.6% decrease (95% CI: −5.6%, 0.4%) in serum adiponectin (P = 0.006 for difference after adjustment for the change in BMI, age, and sex). In −10066 G/G homozygotes, serum adiponectin increased with age after the HM diet and decreased after the LF diet. Conclusion: In white −10066 G/G homozygotes, an HM diet may help to increase adiponectin concentrations with advancing age. This trial was registered at clinicaltrials.gov as ISRCTN29111298.
Resumo:
Vascular dysfunction is recognised as an integrative marker of CVD. While dietary strategies aimed at reducing CVD risk include reductions in the intake of SFA, there are currently no clear guidelines on what should replace SFA. The purpose of this review was to assess the evidence for the effects of total dietary fat and individual fatty acids (SFA, MUFA and n-6 PUFA) on vascular function, cellular microparticles and endothelial progenitor cells. Medline was systematically searched from 1966 until November 2010. A total of fifty-nine peer-reviewed publications (covering fifty-six studies), which included five epidemiological, eighteen dietary intervention and thirty-three test meal studies, were identified. The findings from the epidemiological studies were inconclusive. The limited data available from dietary intervention studies suggested a beneficial effect of low-fat diets on vascular reactivity, which was strongest when the comparator diet was high in SFA, with a modest improvement in measures of vascular reactivity when high-fat, MUFA-rich diets were compared with SFA-rich diets. There was consistent evidence from the test meal studies that high-fat meals have a detrimental effect on postprandial vascular function. However, the evidence for the comparative effects of test meals rich in MUFA or n-6 PUFA with SFA on postprandial vascular function was limited and inconclusive. The lack of studies with comparable within-study dietary fatty acid targets, a variety of different study designs and different methods for determining vascular function all confound any clear conclusions on the impact of dietary fat and individual fatty acids on vascular function.
Resumo:
The PPARγ2 gene SNP Pro12Ala has shown variable association with metabolic syndrome traits in healthy subjects. We investigated the effect of interaction between genotype and the ratio of polyunsaturated:saturated (P:S) fatty acid intake on plasma lipids in 367 White subjects aged 30-70 y at increased cardiometabolic risk, in the RISCK study. Interaction was determined after habitual diet at recruitment, at baseline after a 4-week high-SFA (HS) diet and after 24-week reference (HS), high-MUFA (HM) and low-fat (LF) diets. At recruitment, there were no significant associations between genotype and plasma lipids, however, P:S x genotype interaction influenced plasma total cholesterol (TC) (P=0.02), LDL-cholesterol (LDL-C) (P=0.002) and triglyceride (TG) (P=0.02) concentrations. At P:S ratio ≤0.33, mean TC and LDL-C concentrations in Ala12 allele carriers were significantly higher than in non-carriers (respectively P=0.003; P=0.0001). Significant trends in reduction of plasma TC (P=0.02) and TG (P=0.002) concentrations occurred with increasing P:S (respectively ≤0.33 to >0.65 and 0.34 to >0.65) in Ala12 allele carriers. There were no significant differences between carriers and non-carriers after the 4-week HS diet or 24-week interventions. Plasma TC and TG concentrations in PPARG Ala12 allele carriers decrease as P:S increases, but are not dependent on a reduction in SFA intake.