996 resultados para Diesel. Remoção de enxofre. Adsorção. Vermiculita. Tensoativos. Microemulsão
Resumo:
The chemical and physical characterization of coastal peat has been studied. It was examined the pH, organic matter content and elementary and XRD analyses, among other characteristics. The peat was then applied to the retention and competition of metal micronutrients (Cu and Zn) from metal nitrate solutions. The retention was affected by both the pH and time of adsorption, while the competitive character of these metals for the substrate was relevant to each pH examined.
Resumo:
It was evaluated the applicability of Langmuir, Freundlich and Temkin models to copper adsorption in three classes of soils. Fractions of each soil were added to test tubes containing growing concentrations of the metal in solution. The tubes were shaken and the copper concentrations were determined in the extracts by atomic absorption spectrometry (AAS). The models offered a good fit for the experimental data indicating that presence of silicated clay had high influence on copper sorption. The Langmuir isotherm showed high influence of the organic matter in the absorption phenomenon. It was evidenced the importance of further studies related to Temkin model.
Resumo:
The adsorption of H and S2- species on Pd (100) has been studied with ab initio, density-functional calculations and electrochemical methods. A cluster of five Pd atoms with a frozen geometry described the surface. The computational calculations were performed through the GAUSSIAN94 program, and the basis functions adapted to a pseudo-potential obtained by using the Generator Coordinate Method adapted to the this program. Using the cyclic voltammetry technique through a Model 283 Potentiostat/Galvanostat E.G.&G-PAR obtained the electrochemical results. The calculated chemisorption geometry has a Pd-H distance of 1.55Å, and the potential energy surface was calculated using the Becke3P86//(GCM/DFT/SBK) methodology. The adsorption of S2- ions on Pd surface obtained both through comparison between the experimental and theoretical results, at MP2 level, suggest a S2- absorption into the metallic cluster. The produced Pd-(S2-) system was show to be very stable under the employed experimental conditions. The paper has shows the powerful aid of computational methods to interpret adsorption experimental data.
Resumo:
This paper presents a study of adsorption of xanthate with alkyl chain of two (C2XK), four (C4XK) and eight (C8XK) atoms of carbon, on pyrite from Santa Catarina, Brazil. The results showed that pyrite surface changes from hydrophilic to hydrophobic when xanthate is adsorbed increasing the contact angle to 35º for C2XK, and to 90º for C4XK and C8XK. The rate of flotation of pyrite particles after adsorption increases with the increase of the number of carbon atoms in the alkyl chain in agreement with the results of contact angle measurements.
Resumo:
Platinum is widely used as electrode in electrocatalytic processes, however the use of polycrystalline electrodes introduces a series of variables in the electrochemical system due to the aleatory contribution of all the crystallographic orientations with different surface packing of atoms. Single crystal platinum electrodes of low Miller index present surface structure of high regularity and serve as model to establish a correlation among the macroscopic and microscopic properties of the electrochemical interface. Therefore, the main aim of this work is the study of the voltammetric profiles of the reversible adsorption-desorption of hydrogen on Pt(100), Pt(110) and Pt(111), in order to correlate the electrochemical properties of each different orientation with the surface atomic structure.
Resumo:
The oxidation process of sulfur(IV) species by oxygen, ozone and nitrogen oxides, catalysed by trace metal ions, can play an important role in atmospheric chemistry processes like acid rain, visibility degradation and health hazard. An overview of the more relevant investigations on emissions sources, aqueous phase conversion process and environmental impact is presented.
Resumo:
The present experiment describes an easy procedure for obtaining SiO2/ZrO2 by reacting ZrOCl2 with SiO2 with the following characteristics: S BET = 500 m² g-1 and an average pore diameter of 6 nm. The material obtained presented 1.3 wt% ZrO2 content corresponding to 140 mumol g-1. The average density of ZrO2 onto SiO2/ZrO2 matrix is 2.8x10-11 mol cm-2. The adsorption isotherm for Cr(VI) showed a maximum of adsorption value (200 mumol g-1) at pH 2. The adsorption can be described by the reaction: =Zr(OH)2 + 2HCrO4- + 2H+ [(=Zr(OH2+)2) (HCrO4-)2]. Above the zero point of charge, i.e. pH > 5.5 due to the surface charge inversion, desorption of Cr(VI) occurs according to the reaction: [(=Zr(OH2+)2) (HCrO4-)2] + 6OH-
(=ZrO2)2- + 6H2O + 2CrO4(2-).
Resumo:
The adsorption of triadimenol (1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol) on soil samples with varying contents of organic matter was studied. The adsorption was described by means of the Freundlich's isoterm. An increase in the capacity of adsorption was observed as the content of organic carbon in the matrix increased. That effect was observed when removing the organic matter from the soil, when adding a urban waste compost to the soil sample as well as to the soil sample without organic matter, and also after leaving proportions of urban waste compost incubated in these matrices for a period of 120 days. The results show that the adsorption of the triadimenol in the soil is dependent of its content of organic carbon.
Resumo:
A Fortran77 program, SSPBE, designed to solve the spherically symmetric Poisson-Boltzmann equation using cell model for ionic macromolecular aggregates or macroions is presented. The program includes an adsorption model for ions at the aggregate surface. The working algorithm solves the Poisson-Boltzmann equation in the integral representation using the Picard iteration method. Input parameters are introduced via an ASCII file, sspbe.txt. Output files yield the radial distances versus mean field potentials and average molar ion concentrations, the molar concentration of ions at the cell boundary, the self-consistent degree of ion adsorption from the surface and other related data. Ion binding to ionic, zwitterionic and reverse micelles are presented as representative examples of the applications of the SSPBE program.
Resumo:
This review had as aim the bibliography research for the use of aluminosilicates to remove heavy metals from wastewaters. Advanced studies based on parameters that have influence for removal of heavy metals as pH, metal concentration, effect of ligants and removal capacity of zeolites and clays, were reported. These studies demonstrate that aluminosilicates can be successfully used for the removal of heavy metals under the optimized conditions.
Influência da calcinação sobre a remoção de ferro da caulinita e ilita e seus efeitos sobre a acidez
Resumo:
Samples of natural clay composed by kaolinite, illite, goethite and quartz, were calcinated and submitted to lixiviation with citrate and chloridric acid in order to remove iron. Investigation due to extraction consequences was carried cut by analyzing its acid properties using ammonia gas as probe in infrared spectrophotometry analysis. The sample that were treated with citrate followed by acid lixiviation yield materials twice more acid than samples treated with acid only.
Resumo:
Some commercial samples of vermicompost from bovine manure (humus) were characterized by thermogravimetry with respect to humidity, organic matter and ash contents, the percentages of which range from 6.55 to 5.35%, 53.01 to 69.96% and 46.44 to 66,14%, respectively. The capacity of adsorption of Cu2+, Zn2+ and Co2+ ions by these samples has been evaluated as a function of pH and time. The contents of several metal ions in the original vermicompost samples have been determined by flame atomic absorption spectrometry after digestion in a microwave oven. The high nitrogen content suggests that the earthworms used in the maturation procedure lead to an efficient degradation of organic matter. The metal retention was affected by both pH and adsorption time. The results also show that adsorption follows the order Cu2+ > Zn2+ > Co2+.
Resumo:
The exhaust emissions of vehicles greatly contribute to environmental pollution. Diesel engines are extremely fuel-efficient. However, the exhaust compounds emitted by diesel engines are both a health hazard and a nuisance to the public. This paper gives an overview of the emission control of particulates from diesel exhaust compounds. The worldwide emission standards are summarized. Possible devices for reducing diesel pollutants are discussed. It is clear that after-treatment devices are necessary. Catalytic converters that collect particulates from diesel exhaust and promote the catalytic burn-off are examined. Finally, recent trends in diesel particulate emission control by novel catalysts are presented.
Resumo:
Normally, the determination of equilibrium constants (k d) in batch experiments uses a high solution to soil ratio, which does not represent field conditions. In this study we present an alternative method to evaluate adsorption constants, using micro-columns of soil at higher soil to solution ratios. The centrifugation force and equilibration time were investigated. The triadimenol distribution along the column profile is controlled by diffusion and equilibration times greater than 24 h are needed to achieve reproducibility. The centrifugation force must be superior to 670 g in order to guarantee enough extraction of the liquid solution from the soil columns.
Resumo:
This paper presents the study of adsorption/desorption of the explosive tetryl (2,4,6-trinitrophenylmethyl-nitramine) in different matrices, such as in natura soil, roasted soil, humic acid of soil, in natura peat, roasted peat and humic acid of peat. The aim of the study is to evaluate the interaction capacity of those matrices with the explosive. The analytic technique used was HPLC (high performance liquid chromatography), with UV-detection at 230 nm. The Freundlich isotherms were utilized for the mathematical treatment of the data. The results indicated that in natura soil and in natura peat (with organic substances) are excellent matrices for the retention of tetryl, adsorbing it and keeping it immovable, preventing it from contaminating the groundwater. The largest adsorption of the explosive ocurred in in natura soil, while the smallest desorption was observed in in natura peat. After the calcination of the matrices, the smallest adsorption was observed, indicating that the retention occurs in the organic substance.