999 resultados para Crop Simulation
Resumo:
An active strain formulation for orthotropic constitutive laws arising in cardiac mechanics modeling is introduced and studied. The passive mechanical properties of the tissue are described by the Holzapfel-Ogden relation. In the active strain formulation, the Euler-Lagrange equations for minimizing the total energy are written in terms of active and passive deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiac cells. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed and different mechanical activation functions are considered. In addition, the active strain formulation is compared with the classical active stress formulation from both numerical and modeling perspectives. Taylor-Hood and MINI finite elements are employed to discretize the mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main key features of the phenomenon, while allowing savings in computational costs.
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
Resumo:
The Agricultural Risk Protection Act greatly increased the expected marginal net benefit of farmers buying high-coverage crop insurance policies by coupling premium subsidies to coverage level. This policy change, combined with cross-sectional variations in expected marginal net benefits of high-coverage policies, is used to estimate the role that premium subsidies play in farmers’ crop insurance decisions. We use county data for corn, soybeans, and wheat to estimate regression equations that are then used to obtain insight into two policy scenarios. We first estimate that eventual adoption of actuarially fair incremental premiums, combined with current coupled subsidies, would increase farmers’ purchase of high-coverage policies by almost 400 percent from 1998 levels across the three crops and two plans of insurance included in the analysis. We then estimate that a return to decoupled subsidies would decrease farmers’ high-coverage purchase decisions by an average of 36 percent.
Resumo:
Plants produce a range of biopolymers for purposes such as maintenance of structural integrity, carbon storage, and defense against pathogens and desiccation. Several of these natural polymers are used by humans as food and materials, and increasingly as an energy carrier. In this review, we focus on plant biopolymers that are used as materials in bulk applications, such as plastics and elastomers, in the context of depleting resources and climate change, and consider technical and scientific bottlenecks in the production of novel or improved materials in transgenic or alternative crop plants. The biopolymers discussed are natural rubber and several polymers that are not naturally produced in plants, such as polyhydroxyalkanoates, fibrous proteins and poly-amino acids. In addition, monomers or precursors for the chemical synthesis of biopolymers, such as 4-hydroxybenzoate, itaconic acid, fructose and sorbitol, are discussed briefly
Resumo:
Risks of significant infant drug exposure through human milk arepoorly defined due to lack of large-scale PK data. We propose to useBayesian approach based on population PK (popPK)-guided modelingand simulation for risk prediction. As a proof-of-principle study, weexploited fluoxetine milk concentration data from 25 women. popPKparameters including milk-to-plasma ratio (MP ratio) were estimatedfrom the best model. The dose of fluoxetine the breastfed infant wouldreceive through mother's milk, and infant plasma concentrations wereestimated from 1000 simulated mother-infant pairs, using randomassignment of feeding times and milk volume. A conservative estimateof CYP2D6 activity of 20% of the allometrically-adjusted adult valuewas assumed. Derived model parameters, including MP ratio were consistentwith those reported in the literature. Visual predictive check andother model diagnostics showed no signs of model misspecifications.The model simulation predicted that infant exposure levels to fluoxetinevia mother's milk were below 10% of weight-adjusted maternal therapeuticdoses in >99% of simulated infants. Predicted median ratio ofinfant-mother serum levels at steady state was 0.093 (range 0.033-0.31),consistent with literature reported values (mean=0.07; range 0-0.59).Predicted incidence of relatively high infant-mother ratio (>0.2) ofsteady-state serum fluoxetine concentrations was <1.3%. Overall, ourpredictions are consistent with clinical observations. Our approach maybe valid for other drugs, allowing in silico prediction of infant drugexposure risks through human milk. We will discuss application of thisapproach to another drug used in lactating women.
Resumo:
BACKGROUND: Risks of significant infant drug exposurethrough breastmilk are poorly defined for many drugs, and largescalepopulation data are lacking. We used population pharmacokinetics(PK) modeling to predict fluoxetine exposure levels ofinfants via mother's milk in a simulated population of 1000 motherinfantpairs.METHODS: Using our original data on fluoxetine PK of 25breastfeeding women, a population PK model was developed withNONMEM and parameters, including milk concentrations, wereestimated. An exponential distribution model was used to account forindividual variation. Simulation random and distribution-constrainedassignment of doses, dosing time, feeding intervals and milk volumewas conducted to generate 1000 mother-infant pairs with characteristicssuch as the steady-state serum concentrations (Css) and infantdose relative to the maternal weight-adjusted dose (relative infantdose: RID). Full bioavailability and a conservative point estimate of1-month-old infant CYP2D6 activity to be 20% of the adult value(adjusted by weigth) according to a recent study, were assumed forinfant Css calculations.RESULTS: A linear 2-compartment model was selected as thebest model. Derived parameters, including milk-to-plasma ratios(mean: 0.66; SD: 0.34; range, 0 - 1.1) were consistent with the valuesreported in the literature. The estimated RID was below 10% in >95%of infants. The model predicted median infant-mother Css ratio was0.096 (range 0.035 - 0.25); literature reported mean was 0.07 (range0-0.59). Moreover, the predicted incidence of infant-mother Css ratioof >0.2 was less than 1%.CONCLUSION: Our in silico model prediction is consistent withclinical observations, suggesting that substantial systemic fluoxetineexposure in infants through human milk is rare, but further analysisshould include active metabolites. Our approach may be valid forother drugs. [supported by CIHR and Swiss National Science Foundation(SNSF)]
Resumo:
Vigorous and Healthy woodlands in Iowa have the unique distinction of being able to provide a wealth of benefits for the landowner and residents of the state. Benefits from a healthy forest include timber and wood resources, watershed protection, fragile site protection, wildlife and bird habitat, aesthetics and beauty, and recreational opportunities.
Resumo:
This study analyzes the impact of price shocks in three input and output markets critical to ethanol: gasoline, corn, and sugar. We investigate the impact of these shocks on ethanol and related agricultural markets in the United States and Brazil. We find that the composition of a country’s vehicle fleet determines the direction of the response of ethanol consumption to changes in the gasoline price. We also find that a change in feedstock costs affects the profitability of ethanol producers and the domestic ethanol price. In Brazil, where two commodities compete for sugarcane, changes in the sugar market affect the competing ethanol market.
Resumo:
The successful expansion of the U.S. crop insurance program has not eliminated ad hoc disaster assistance. An alternative currently being explored by members of Congress and others in preparation of the 2007 farm bill is to simply remove the “ad hoc” part of disaster assistance programs by creating a standing program that would automatically funnel aid to hard-hit regions and crops. One form such a program could take can be found in the area yield and area revenue insurance programs currently offered by the U.S. crop insurance program. The Group Risk Plan (GRP) and Group Risk Income Protection (GRIP) programs automatically trigger payments when county yields or revenues, respectively, fall below a producer-elected coverage level. The per-acre taxpayer costs of offering GRIP in Indiana, Illinois, and Iowa for corn and soybeans through the crop insurance program are estimated. These results are used to determine the amount of area revenue coverage that could be offered to farmers as part of a standing farm bill disaster program. Approximately 55% of taxpayer support for GRIP flows to the crop insurance industry. A significant portion of this support comes in the form of net underwriting gains. The expected rate of return on money put at risk by private crop insurance companies under the current Standard Reinsurance Agreement is approximately 100%. Taking this industry support and adding in the taxpayer support for GRIP that flows to producers would fund a county target revenue program at the 93% coverage level.
Resumo:
OBJECTIVETo identify the association between the use of web simulation electrocardiography and the learning approaches, strategies and styles of nursing degree students.METHODA descriptive and correlational design with a one-group pretest-posttest measurement was used. The study sample included 246 students in a Basic and Advanced Cardiac Life Support nursing class of nursing degree.RESULTSNo significant differences between genders were found in any dimension of learning styles and approaches to learning. After the introduction of web simulation electrocardiography, significant differences were found in some item scores of learning styles: theorist (p < 0.040), pragmatic (p < 0.010) and approaches to learning.CONCLUSIONThe use of a web electrocardiogram (ECG) simulation is associated with the development of active and reflexive learning styles, improving motivation and a deep approach in nursing students.
Resumo:
In this paper the core functions of an artificial intelligence (AI) for controlling a debris collector robot are designed and implemented. Using the robot operating system (ROS) as the base of this work a multi-agent system is built with abilities for task planning.
Resumo:
Le modèle développé à l'Institut universitaire de médecine sociale et préventive de Lausanne utilise un programme informatique pour simuler les mouvements d'entrées et de sorties des hôpitaux de soins généraux. Cette simulation se fonde sur les données récoltées de routine dans les hôpitaux; elle tient notamment compte de certaines variations journalières et saisonnières, du nombre d'entrées, ainsi que du "Case-Mix" de l'hôpital, c'est-à-dire de la répartition des cas selon les groupes cliniques et l'âge des patients.
Resumo:
This paper studies how the strength of intellectual property rights (IPRs) affects investments in biological innovations when the value of an innovation is stochastically reduced to zero because of the evolution of pest resistance. We frame the problem as a research and development (R&D) investment game in a duopoly model of sequential innovation. We characterize the incentives to invest in R&D under two competing IPR regimes, which differ in their treatment of the follow-on innovations that become necessary because of pest adaptation. Depending on the magnitude of the R&D cost, ex ante firms might prefer an intellectual property regime with or without a “research exemption” provision. The study of the welfare function that also accounts for benefit spillovers to consumers—which is possible analytically under some parametric conditions, and numerically otherwise—shows that the ranking of the two IPR regimes depends critically on the extent of the R&D cost.