908 resultados para Copper mines and mining
Resumo:
When considering contaminated site ecology and ecological risk assessment a key question is whether organisms that appear unaffected by accumulation of contaminants are tolerant or resistant to those contaminants. A population of Dendrodrilus rubidus Savigny earthworms from the Coniston Copper Mines, an area of former Cu mining, exhibit increased tolerance and accumulation of Cu relative to a nearby non-Cu exposed population. Distribution of total Cu between different body parts (posterior, anterior, body wall) of the two populations was determined after a 14 day exposure to 250 mg Cu kg(-1) in Cu-amended soil. Cu concentrations were greater in Coniston earthworms but relative proportions of Cu in different body parts were the same between populations. Cu speciation was determined using extended X-ray absorption fine structure spectroscopy (EXAFS). Cu was coordinated to 0 atoms in the exposure soil but to S atoms in the earthworms. There was no difference in this speciation between the different earthworm populations. In another experiment earthworms were exposed to a range of Cu concentrations (200-700 mg Cu kg(-1)). Subcellular partitioning of accumulated Cu was determined. Coniston earthworms accumulated more Cu but relative proportions of Cu in the different fractions (cytosol > granular > tissue fragments, cell membranes, and intact cells) were the same between populations. Results suggest that Coniston D. rubidus are able to survive in the Cu-rich Coniston Copper Mines soil through enlargement of the same Cu storage reservoirs that exist in a nearby non-Cu exposed population.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling trace element distribution in soils around ancient and modem mining and smelting areas are not always clear. Tharsis, Riotinto and Huelva are located in the Iberian Pyrite Belt in SW Spain. Tharsis and Riotinto mines have been exploited since 2500 B.C., with intensive smelting taking place. Huelva, established in 1970 and using the Flash Furnace Outokumpu process, is currently one of the largest smelter in the world. Pyrite and chalcopyrite ore have been intensively smelted for Cu. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters, being found up to a maximum of 2 kin from the mines and smelters at Tharsis, Riotinto and Huelva. Trace element partitioning (over 2/3 of trace elements found in the residual immobile fraction of soils at Tharsis) and soil particles examination by SEM-EDX showed that trace elements were not adsorbed onto soil particles, but were included within the matrix of large trace element-rich Fe silicate slag particles (i.e. 1 min circle divide at least 1 wt.% As, Cu and Zn, and 2 wt.% Pb). Slag particle large size (I mm 0) was found to control the geographically restricted trace element distribution in soils at Tharsis, Riotinto and Huelva, since large heavy particles could not have been transported long distances. Distribution and partitioning indicated that impacts to the environment as a result of mining and smelting should remain minimal in the region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Safety is an element of extreme priority in mining operations, currently many traditional mining countries are investing in the implementation of wireless sensors capable of detecting risk factors; through early warning signs to prevent accidents and significant economic losses. The objective of this research is to contribute to the implementation of sensors for continuous monitoring inside underground mines providing technical parameters for the design of sensor networks applied in underground coal mines. The application of sensors capable of measuring in real time variables of interest, promises to be of great impact on safety for mining industry. The relationship between the geological conditions and mining method design, establish how to implement a system of continuous monitoring. In this paper, the main causes of accidents for underground coal mines are established based on existing worldwide reports. Variables (temperature, gas, structural faults, fires) that can be related to the most frequent causes of disaster and its relevant measuring range are then presented, also the advantages, management and mining operations are discussed, including the analyzed of applying these systems in terms of Benefit, Opportunity, Cost and Risk. The publication focuses on coal mining, based on the proportion of these events a year worldwide, where a significant number of workers are seriously injured or killed. Finally, a dynamic assessment of safety at underground mines it is proposed, this approach offers a contribution to design personalized monitoring networks, the experience developed in coal mines provides a tool that facilitates the application development of technology within underground coal mines.
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Labor Historian Marc Karson has singled out “labor priest” Peter E. Dietz as one of the strongest proponents for the active implementation of the Catholic Church’s 1890’s labor encyclical Rerum Novarum in the daily practice of American Catholics. Biographer Sister Mary Harrita Fox pointed out that in his work, Dietz “was particularly concerned over the role of the church in the copper strike in Upper Michigan.” This “particular concern” should be noted since the 1913 strike was one of the only disputes where Dietz went out of his way to visit and become actively involved. Why the keen interest? This presentation will review the impetus for the huge effort which brought Peter E. Dietz to the Copper Country and solely to that dispute alone, the resulting visit and report that he made concerning the strike, the important role he believed this visit and stance in the Copper Strike had in the future of the Church’s relationship to the US labor movement. The presentation will look at both what Dietz thought would occur as a result of his 1913 trip to the Keweenaw and what actually happened in this pivotal pre-World War One era event. The paper will put Father Peter E. Dietz and the Catholic Church into the larger frame of how religion has been viewed within the history of the Strike.
Resumo:
This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.
Resumo:
Three decades after the unsuccessful 1913-1914 strike at the Lake District copper mines of Michigan, workers organized as Local 584 of the International Union of Mine, Mill, and Smelter Workers (Mine Mill) signed a union contract with Calumet & Hecla Consolidated Copper Company. C & H was the last and most significant of the region’s three major copper mining companies to unionize during the three-year period from 1939 to 1942. This paper tells the untold history of the successful union drives in the Lake District’s copper mines, starting with Copper Range Company in 1939 and encompassing the subsequent unionizations of Quincy Mining Company and finally C & H. The paper develops thematic connections between the 1913-1914, including Mine Mill’s lineage to the Western Federation of Miners, parallel ethnic dimensions, and, most significantly, the contrasting role of state authority between the two time periods. The paper carries the Lake District’s labor history forward to 1955 to include United Steelworkers’ successful challenge to Mine Mill in 1950 and the strike of 1955. This history also incorporates source material from the papers of highly influential union organizer and representative Eugene Saari, material which to date has not been integrated into the labor history of the region. This paper has not yet been submitted.
Resumo:
The Keweenaw Peninsula of Upper Michigan was a ethnic conglomerate of cultures and ideas, with people attracted to the area by the mineral wealth found along the Copper Range. The center of copper mining from the mid 1860s to 1968 was in the vicinity of Calumet Township, home to the world-famous Calumet and Hecla Mining Company. The township depended on the mines and the company’s president Agassiz’s strove to make the area a “model community,” that included groups such as the Free and Accepted Masons. Men from myriad backgrounds arrived in Calumet from the British Isles, Germany, Finland, Eastern and Southern Europe and the Eastern United States. As in other communities from the time period these men formed common interest groups like Masonic Lodge 271, which received its charter in 1870. Gentlemen joined with merchants and craftsmen. They became “brethren upon the same level,” and were elevated to the status of Master Mason. This symbolic transformation within the Lodge removed the men from the “profane world” outside the sanctity of Masonry, and in the ritualistic transformation of the meeting they were reborn into Masonry’s sacred mysteries. Masonry acted as a means of moral guidance to men and gave them access to a larger social and economic community through a common connection of brotherhood. As the candidates moved through the three Blue Lodge degrees of Entered Apprentice, Fellowcraft, and Master Mason they saw each other as “brethren upon the same level” – all economic classes equal within the Masonic Lodge. To examine equality within Lodge 271, this study sorted workers into classes to allow a comparison of Lodge 271’s membership. Possibly a comparison between other lodges can be drawn from the membership. The Union Building in Calumet, MI will be examined for its role in the ritualistic transformation of Masonry as it housed Masonic activities and transformations. This transformation brought men into the lodge of brothers. While Masonry professed equality between members however, to what extent did the membership of the lodge reflect this between the brethren? To what extent did economic class determine who was made “brethren upon the same level? 1 Arthur Thurner, Calumet Copper and People: History of a Michigan Mining Community, 1864-1970 (Hancock, MI: Book Concern, 1974), 122.
Resumo:
This lecture discusses monitoring activities of the Berkeley Pit for the past 31 years at the Montana Bureau of Mines and Geology in Butte, Montana.
Resumo:
The Continental porphyry Cu‐Mo mine, located 2 km east of the famous Berkeley Pit lake of Butte, Montana, contains two small lakes that vary in size depending on mining activity. In contrast to the acidic Berkeley Pit lake, the Continental Pit waters have near-neutral pH and relatively low metal concentrations. The main reason is geological: whereas the Berkeley Pit mined highly‐altered granite rich in pyrite with no neutralizing potential, the Continental Pit is mining weakly‐altered granite with lower pyrite concentrations and up to 1‐2% hydrothermal calcite. The purpose of this study was to gather and interpret information that bears on the chemistry of surface water and groundwater in the active Continental Pit. Pre‐existing chemistry data from sampling of the Continental Pit were compiled from the Montana Bureau of Mines and Geology and Montana Department of Environmental Quality records. In addition, in March of 2013, new water samples were collected from the mine’s main dewatering well, the Sarsfield well, and a nearby acidic seep (Pavilion Seep) and analyzed for trace metals and several stable isotopes, including dD and d18O of water, d13C of dissolved inorganic carbon, and d34S of dissolved sulfate. In December 2013, several soil samples were collected from the shore of the frozen pit lake and surrounding area. The soil samples were analyzed using X‐ray diffraction to determine mineral content. Based on Visual Minteq modeling, water in the Continental Pit lake is near equilibrium with a number of carbonate, sulfate, and molybdate minerals, including calcite, dolomite, rhodochrosite (MnCO3), brochantite (CuSO4·3Cu(OH)2), malachite (Cu2CO3(OH)2), hydrozincite (Zn5(CO3)2(OH)6), gypsum, and powellite (CaMoO4). The fact that these minerals are close to equilibrium suggests that they are present on the weathered mine walls and/or in the sediment of the surface water ponds. X‐Ray Diffraction (XRD) analysis of the pond “beach” sample failed to show any discrete metal‐bearing phases. One of the soil samples collected higher in the mine, near an area of active weathering of chalcocite‐rich ore, contained over 50% chalcanthite (CuSO4·5H2O). This water‐soluble copper salt is easily dissolved in water, and is probably a major source of copper to the pond and underlying groundwater system. However, concentrations of copper in the latter are probably controlled by other, less‐soluble minerals, such as brochantite or malachite. Although the acidity of the Pavilion Seep is high (~ 11 meq/L), the flow is much less than the Sarsfield Well at the current time. Thus, the pH, major and minor element chemistry in the Continental Pit lakes are buffered by calcite and other carbonate minerals. For the Continental Pit waters to become acidic, the influx of acidic seepage (e.g., Pavilion Seep) would need to increase substantially over its present volume.
Resumo:
We report a trace element - Pb isotope analytical (LIA) database on the "Singen Copper", a peculiar type of copper found in the North Alpine realm, from its type locality, the Early Bronze Age Singen Cemetery (Germany). What distinguishes “Singen Copper” from other coeval copper types? (i) is it a discrete metal lot with a uniform provenance (if so, can its provenance be constrained)? (ii) was it manufactured by a special, unique metallurgical process that can be discriminated from others? Trace element concentrations can give clues on the ore types that were mined, but they can be modified (more or less intentionally) by metallurgical operations. A more robust indicator are the ratios of chemically similar elements (e.g. Co/Ni, Bi/Sb, etc.), since they should remain nearly constant during metallurgical operations, and are expected to behave homogeneously in each mineral of a given mining area, but their partition amongst the different mineral species is known to cause strong inter-element fractionations. We tested the trace element ratio pattern predicted by geochemical arguments on the Brixlegg mining area. Brixlegg itself is not compatible with the Singen Copper objects, and we only report it because it is a rare instance of a mining area for which sufficient trace element analyses are available in the literature. We observe that As/Sb in fahlerz varies by a factor 1.8 above/below median; As/Sb in enargite varies by a factor of 2.5 with a 10 times higher median. Most of the 102 analyzed metal objects from Singen are Sb-Ni-rich, corresponding to “antimony-nickel copper” of the literature. Other trace element concentrations vary by > 100 times, ratios by factors > 50. Pb isotopic compositions are all significantly different from each other. They do not form a single linear array and require > 3 ore batches that certainly do not derive from one single mining area. Our data suggest a heterogeneous provenance of “Singen copper”. Archaeological information limits the scope to Central European sources. LIA requires a diverse supply network from many mining localities, including possibly Brittany. Trace element ratios show more heterogeneity than LIA; this can be explained either by deliberate selection of one particular ore mineral (from very many sources) or by processing of assorted ore minerals from a smaller number of sources, with the unintentional effect that the quality of the copper would not be constant, as the metallurgical properties of alloys would vary with trace element concentrations.
Resumo:
Mode of access: Internet.
Resumo:
Name changed on May 11, 1920 from Canadian Mining Institute.
Resumo:
"Special publication."