793 resultados para Communication in science.
Resumo:
This paper introduces CSP-like communication mechanisms into Backus’ Functional Programming (FP) systems extended by nondeterministic constructs. Several new functionals are used to describe nondeterminism and communication in programs. The functionals union and restriction are introduced into FP systems to develop a simple algebra of programs with nondeterminism. The behaviour of other functionals proposed in this paper are characterized by the properties of union and restriction. The axiomatic semantics of communication constructs are presented. Examples show that it is possible to reason about a communicating program by first transforming it into a non-communicating program by using the axioms of communication, and then reasoning about the resulting non-communicating version of the program. It is also shown that communicating programs can be developed from non-communicating programs given as specifications by using a transformational approach.
Resumo:
A major challenge in wireless communications is overcoming the deleterious effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped call. Multiple-antennas communication systems, commonly referred to as MIMO systems, employ multiple antennas at both transmitter and receiver, thereby creating a multitude of signalling pathways between transmitter and receiver. These multiple pathways give the signal a diversity advantage with which to combat fading. Apart from helping overcome the effects of fading, MIMO systems can also be shown to provide a manyfold increase in the amount of information that can be transmitted from transmitter to receiver. Not surprisingly,MIMO has played, and continues to play, a key role in the advancement of wireless communication.Space-time codes are a reference to a signalling format in which information about the message is dispersed across both the spatial (or antenna) and time dimension. Algebraic techniques drawing from algebraic structures such as rings, fields and algebras, have been extensively employed in the construction of optimal space-time codes that enable the potential of MIMO communication to be realized, some of which have found their way into the IEEE wireless communication standards. In this tutorial article, reflecting the authors’interests in this area, we survey some of these techniques.
Resumo:
Spatial modulation (SM) and space shift keying (SSK) are relatively new modulation techniques which are attractive in multi-antenna communications. Single carrier (SC) systems can avoid the peak-to-average power ratio (PAPR) problem encountered in multicarrier systems. In this paper, we study SM and SSK signaling in cyclic-prefixed SC (CPSC) systems on MIMO-ISI channels. We present a diversity analysis of MIMO-CPSC systems under SSK and SM signaling. Our analysis shows that the diversity order achieved by (n(t), n(r)) SSK scheme and (n(t), n(r), Theta(M)) SM scheme in MIMO-CPSC systems under maximum-likelihood (ML) detection is n(r), where n(t), n(r) denote the number of transmit and receive antennas and Theta(M) denotes the modulation alphabet of size M. Bit error rate (BER) simulation results validate this predicted diversity order. Simulation results also show that MIMO-CPSC with SM and SSK achieves much better performance than MIMO-OFDM with SM and SSK.
Resumo:
We consider the problem of secure communication in mobile Wireless Sensor Networks (WSNs). Achieving security in WSNs requires robust encryption and authentication standards among the sensor nodes. Severe resources constraints in typical Wireless Sensor nodes hinder them in achieving key agreements. It is proved from past studies that many notable key management schemes do not work well in sensor networks due to their limited capacities. The idea of key predistribution is not feasible considering the fact that the network could scale to millions. We prove a novel algorithm that provides robust and secure communication channel in WSNs. Our Double Encryption with Validation Time (DEV) using Key Management Protocol algorithm works on the basis of timed sessions within which a secure secret key remains valid. A mobile node is used to bootstrap and exchange secure keys among communicating pairs of nodes. Analysis and simulation results show that the performance of the DEV using Key Management Protocol Algorithm is better than the SEV scheme and other related work.
Resumo:
C-di-GMP Bis-(3'-5')-cyclic-dimeric-guanosine monophosphate], a second messenger is involved in intracellular communication in the bacterial species. As a result several multi-cellular behaviors in both Gram-positive and Gram-negative bacteria are directly linked to the intracellular level of c-di-GMP. The cellular concentration of c-di-GMP is maintained by two opposing activities, diguanylate cyclase (DGC) and phosphodiesterase (PDE-A). In Mycobacterium smegmatis, a single bifunctional protein MSDGC-1 is responsible for the cellular concentration of c-di-GMP. A better understanding of the regulation of c-di-GMP at the genetic level is necessary to control the function of above two activities. In this work, we have characterized the promoter element present in msdgc-1 along with the + 1 transcription start site and identified the sigma factors that regulate the transcription of msdgc-1. Interestingly, msdgc-1 utilizes SigA during the initial phase of growth, whereas near the stationary phase SigB containing RNA polymerase takes over the expression of msdgc-1. We report here that the promoter activity of msdgc-1 increases during starvation or depletion of carbon source like glucose or glycerol. When msdgc-1 is deleted, the numbers of viable cells are similar to 10 times higher in the stationary phase in comparison to that of the wild type. We propose here that msdgc-1 is involved in the regulation of cell population density. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The pathogenesis of Mycobacterium tuberculosis is associated with its ability to survive inside the human host and the bacteria use a variety of mechanism to evade the host's defence. A clearer understanding of the host pathogen interaction is needed to follow the pathogenicity and virulence. Recent advances in the study of inter and intra-cellular communication in bacteria had prompted us to study the role of quorum sensing in bacterial survival and pathogenicity. The cell cell communication in bacteria (quorum sensing) is mediated through the exchange of small molecules called as autoinducers that allow bacteria to modulate their gene expression in response to change in cell-population density. It is a coordinated response that confers multicellularity to a bacterial population in response to stress from external environment. Quorum sensing molecules are the global regulators and regulate a wide range of physiological processes including biofilm formation, motility, cell differentiation, long-term survival and many others. Many bacterial pathogens require quorum sensing to produce the virulence factors in response to host pathogen interaction. Here, we summarize our current understanding on small molecule signalling and their role in the bacterial persistence. New discoveries in these areas have enriched our knowledge on intracellular signalling and their role in the long-term survival of mycobacteria under nutrient starvation.
Resumo:
Acoustic signal variation and female preference for different signal components constitute the prerequisite framework to study the mechanisms of sexual selection that shape acoustic communication. Despite several studies of acoustic communication in crickets, information on both male calling song variation in the field and female preference in the same system is lacking for most species. Previous studies on acoustic signal variation either were carried out on populations maintained in the laboratory or did not investigate signal repeatability. We therefore used repeatability analysis to quantify variation in the spectral, temporal and amplitudinal characteristics of the male calling song of the field cricket Plebeiogryllus guttiventris in a wild population, at two temporal scales, within and across nights. Carrier frequency (CF) was the most repeatable character across nights, whereas chirp period (CP) had low repeatability across nights. We investigated whether female preferences were more likely to be based on features with high (CF) or low (CP) repeatability. Females showed no consistent preferences for CF but were significantly more attracted towards signals with short CPs. The attractiveness of lower CP calls disappeared, however, when traded off with sound pressure level (SPL). SPL was the only acoustic feature that was significantly positively correlated with male body size. Since relative SPL affects female phonotaxis strongly and can vary unpredictably based on male spacing, our results suggest that even strong female preferences for acoustic features may not necessarily translate into greater advantage for males possessing these features in the field. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The basic requirements for secure communication in a vehicular ad hoc network (VANET) are anonymous authentication with source non-repudiation and integrity. The existing security protocols in VANETs do not differentiate between the anonymity requirements of different vehicles and the level of anonymity provided by these protocols is the same for all the vehicles in a network. To provide high level of anonymity, the resource requirements of security protocol would also be high. Hence, in a resource constrained VANET, it is necessary to differentiate between the anonymity requirements of different vehicles and to provide the level of anonymity to a vehicle as per its requirement. In this paper, we have proposed a novel protocol for authentication which can provide multiple levels of anonymity in VANETs. The protocol makes use of identity based signature mechanism and pseudonyms to implement anonymous authentication with source non-repudiation and integrity. By controlling the number of pseudonyms issued to a vehicle and the lifetime of each pseudonym for a vehicle, the protocol is able to control the level of anonymity provided to a vehicle. In addition, the protocol includes a novel pseudonym issuance policy using which the protocol can ensure the uniqueness of a newly generated pseudonym by checking only a very small subset of the set of pseudonyms previously issued to all the vehicles. The protocol cryptographically binds an expiry date to each pseudonym, and in this way, enforces an implicit revocation for the pseudonyms. Analytical and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
Multicast in wireless sensor networks (WSNs) is an efficient way to spread the same data to multiple sensor nodes. It becomes more effective due to the broadcast nature of wireless link, where a message transmitted from one source is inherently received by all one-hop receivers, and therefore, there is no need to transmit the message one by one. Reliable multicast in WSNs is desirable for critical tasks like code updation and query based data collection. The erroneous nature of wireless medium coupled with limited resource of sensor nodes, makes the design of reliable multicast protocol a challenging task. In this work, we propose a time division multiple access (TDMA) based energy aware media access and control (TEA-MAC) protocol for reliable multicast in WSNs. The TDMA eliminates collisions, overhearing and idle listening, which are the main sources of reliability degradation and energy consumption. Furthermore, the proposed protocol is parametric in the sense that it can be used to trade-off reliability with energy and delay as per the requirement of the underlying applications. The performance of TEA-MAC has been evaluated by simulating it using Castalia network simulator. Simulation results show that TEA-MAC is able to considerably improve the performance of multicast communication in WSNs.
Resumo:
Ensuring reliable energy efficient data communication in resource constrained Wireless Sensor Networks (WSNs) is of primary concern. Traditionally, two types of re-transmission have been proposed for the data-loss, namely, End-to-End loss recovery (E2E) and per hop. In these mechanisms, lost packets are re-transmitted from a source node or an intermediate node with a low success rate. The proliferation routing(1) for QoS provisioning in WSNs low End-to-End reliability, not energy efficient and works only for transmissions from sensors to sink. This paper proposes a Reliable Proliferation Routing with low Duty Cycle RPRDC] in WSNs that integrates three core concepts namely, (i) reliable path finder, (ii) a randomized dispersity, and (iii) forwarding. Simulation results demonstrates that packet successful delivery rate can be maintained upto 93% in RPRDC and outperform Proliferation Routing(1). (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Resumo:
Far-field spot compression without energy loss in main lob is of great significance to wireless laser communication. In this letter, we propose two schemes to obtain far-field spot compression without energy loss in main lob. One scheme is based on the simulated annealing (SA) algorithm. Using SA algorithm, we design the phase profile of the diffractive phase element (DPE). Using the designed DPE, far-field spot compression without energy loss in main lob is achieved. The other scheme is based on YG algorithm. By means of YG algorithm, we appropriately designed the DPE in the emitting plane. Using the DPE, far-field spot compression without energy loss in main lob is obtained. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Stringency in the identification of conspecific call properties is essential among sympatric species to ensure conspecific mating, as the risk of improper recognition and heterospecific mating is high. In this study we investigated the basic signal structure required for intraspecies communication in the Chinese alligator (Alligator sinensis), a species that has no relatives living in sympatry, by playback of signals modified in the temporal (truncating original bellows with first 1/4, 1/2, 3/4 or last 1/4, 1/2, 3/4 portion) or frequency domain (with low- or high-pass filters at frequencies 100, 250, 500 and 1000 Hz), or by reversal of natural bellows. The playback experiments revealed that relatively large modifications in bellow temporal or frequency structure failed to impair Chinese alligators' bellowing behavior; even reversed bellows effectively evoked a positive response. In general, the first half of the bellow in temporal domain and frequencies below 500 Hz were critical for behavioral induction, while the last half of the bellow in temporal domain and frequencies above 500 Hz failed to produce a single positive response, implying a potential functional signal redundancy. The observed high tolerance to bellow variations in Chinese alligators may be an evolutionary adaptation to (1) the acoustic constraints of propagation imposed by dense vegetative habitats; or (2) a lack of selection pressure due to the low risk of incorrect conspecific recognition and heterospecific mating.