994 resultados para Classificação dos solos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sewage sludge used for agricultural purposes provides many benefits to soil, but it contain harmful elements to environment, that infers in a great attention on its use. The aim of this work was to evaluate the effects of successive applications of sewage sludge on heavy metals accumulation (cadmium, chromium and lead) in samples of soils and corn plants, as well as evaluate the chemicals extractants efficiency in estimate the phyto disponibility of those elements. The experiment was conducted in randomized blocks design in the 2007/08 season, with 4 treatments (0, 5, 10 and 20 Mg ha-1 of sewage sludge) and 5 replicates. It was evaluated: the quantities available of Cd, Cr and Pb in soil by Melich-1, Melich-3 and DTPA extractants; the quantities extracted by corn plants; and the correlation between the disposition and quantities of those metals on whole plants, diagnosis leaves and corn grains. The application of sewage sludge for eleven consecutive years has not showed increase in total quantity nor availability of Cr, Cd and Pb in the evaluated soils. The extractor Melich-1 was the only one that showed significant correlation for availability of Cd, Cr and Pb in soil and corn plants. The correlation of metal availability in soil x leaf diagnosis was significant only for Pb with the Melich-3 and DTPA extractants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to draw attention to the importance of use of techniques of loss prevention in small retail organization, analyzing and creating a classification model related to the use of these in companies. This work identifies the fragilities and virtues of companies and classifies them relating the use of techniques of loss prevention. The used methodology is based in a revision of the available literature on measurements and techniques of loss prevention, analyzing the processes that techniques needed to be adopted to reduce losses, approaching the "pillars" of loss prevention, the cycle life of products in retail and cycles of continues improvement in business. Based on the objectives of this work and on the light of researched techniques, was defined the case study, developed from a questionnaire application and the researcher's observation on a net of 16 small supermarkets. From those studies a model of classification of companies was created. The practical implications of this work are useful to point mistakes in retail administration that can become losses, reducing the profitability of companies or even making them impracticable. The academic contribution of this study is a proposal of an unpublished model of classification for small supermarkets based on the use of techniques of loss prevention. As a result of the research, 14 companies were classified as Companies with Minimum Use of Loss Prevention Techniques - CMULPT, and 02 companies were classified as Companies with Deficient Use of Loss Prevention Techniques - CDULPT. The result of the research concludes that on average the group was classified as being Companies with Minimum Use of Techniques of Prevention of Losses EUMTPP, and that the companies should adopt a program of loss prevention focusing in the identification and quantification of losses and in a implantation of a culture of loss prevention

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem como objetivo estudar os sistemas de Classificações existentes para a garantia da gestão da qualidade no setor hoteleiro, tendo como foco principal a Matriz de Classificação para os Meios de Hospedagem da EMBRATUR e a ISO 9000, observando os benefícios que esses sistemas e/ou processos de gestão poderão vir a proporcionar para o setor hoteleiro no que se refere à qualidade de seus serviços. Para a obtenção dessas informações foi realizada uma análise comparativa dos sistemas de gestão da qualidade através de pesquisas bibliográficas e de questionários enviados para empreendimentos hoteleiros certificados e classificados, onde os principais resultados fornecidos pela pesquisa foram trabalhados de forma a apresentar, de maneira clara, a superioridade de um sistema em relação ao outro

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A utilização de dois critérios de seleção na pré-desmama, ganho médio diário do nascimento à desmama (GMD) e dias para ganhar 160 kg do nascimento à desmama (D160), foi estudada, analisando-se informações de 16.592 animais, provenientes do controle de desenvolvimento ponderal da Associação Brasileira dos Criadores de Zebu, nascidos no período de 1978 a 1994. Foram incluídos no modelo o efeito fixo de grupo de contemporâneos e os efeitos aleatórios genético aditivo de animal e materno, de ambiente permanente materno e o erro. A covariância entre os efeitos direto e materno foi considerada igual a zero. As estimativas dos componentes de variância e herdabilidade foram obtidas pelo método da máxima verossimilhança restrita e os valores genéticos preditos (VGs), por modelos animais uni-característica. As estimativas de herdabilidade foram: 0,12; 0,05; 0,10 e 0,05 para GMD (efeito direto), GMD (efeito materno), D160 (efeito direto) e D160 (efeito materno), respectivamente. Foram estimadas a correlação genética entre GMD e D160 (efeito direto e materno) e a correlação de classificação (Spearman) entre os valores genéticos para as categorias de touros, vacas e bezerros. As estimativas de correlação genética entre GMD e D160 foram 0,86 e 0,88, para o efeito direto e materno, respectivamente. As estimativas de correlação de ;rank;, também foram altas, entretanto, nenhuma foi igual a um, resultando em alterações na classificação dos animais. A relação entre as médias aritmética (A) e harmônica (H) e o desvio-padrão (S) do GMD ajustado para efeitos ambientais e maternos (GMDc) foi verificada utilizando-se um modelo restrito, sem intercepto, mediante as regressões linear e quadrática do S do GMDc sobre a diferença entre a média aritmética e média harmônica (A-H). Os resultados evidenciaram que, semelhantemente a H, o critério D160 apresentou a propriedade de discriminar touros com progênie mais uniforme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post dispatch analysis of signals obtained from digital disturbances registers provide important information to identify and classify disturbances in systems, looking for a more efficient management of the supply. In order to enhance the task of identifying and classifying the disturbances - providing an automatic assessment - techniques of digital signal processing can be helpful. The Wavelet Transform has become a very efficient tool for the analysis of voltage or current signals, obtained immediately after disturbance s occurrences in the network. This work presents a methodology based on the Discrete Wavelet Transform to implement this process. It uses a comparison between distribution curves of signals energy, with and without disturbance. This is done for different resolution levels of its decomposition in order to obtain descriptors that permit its classification, using artificial neural networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precision and the fast identification of abnormalities of bottom hole are essential to prevent damage and increase production in the oil industry. This work presents a study about a new automatic approach to the detection and the classification of operation mode in the Sucker-rod Pumping through dynamometric cards of bottom hole. The main idea is the recognition of the well production status through the image processing of the bottom s hole dynamometric card (Boundary Descriptors) and statistics and similarity mathematics tools, like Fourier Descriptor, Principal Components Analysis (PCA) and Euclidean Distance. In order to validate the proposal, the Sucker-Rod Pumping system real data are used

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho teve como objetivo identificar e quantificar o uso da terra em dez microbacias ocorrentes na bacia do Rio Capivara, município de Botucatu - SP, a partir da estruturação de um banco de dados utilizando o Sistema de Informações Geográficas (SIG) - IDRISI. Os resultados mostram que as classes de uso da terra, uso agrícola e pastagem, foram as mais significativas, pois ocuparam mais da metade da área das microbacias. O alto índice de uso da terra por pastagens, capoeiras, reflorestamento e matas reflete a predominância de solos arenosos com baixa fertilidade. As imagens obtidas do satélite LANDSAT 5 permitiram o mapeamento do uso da terra de maneira rápida, além de fornecer um excelente banco de dados para futuro planejamento e gerenciamento das atividades agropecuárias regionais. O SIG-IDRISI permitiu identificar, por meio de seus diferentes módulos para georreferenciamento, classificação digital e modelo matemático, as classes de uso da terra com rapidez.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O trabalho teve como objetivo avaliar a sobrevivência do clone H13 de Eucalyptus urograndis sob dois manejos hídricos de viveiro, plantados em dois solos, com e sem a adição de polímero hidroabsorvente (hidrogel). O plantio foi realizado em vasos mantidos em estufa, com dois tipos de solo: um arenoso e outro argiloso. Cada vaso recebeu 2,5 L de solo, um litro de água e o hidrogel na proporção de 0,4 g vaso-1 (120 mL de gel). O delineamento experimental adotado foi o inteiramente casualizado, com três repetições. Os sintomas de estresse, nos vários níveis avaliados, sempre se manifestaram primeiro nas plantas no solo argiloso, de modo mais acentuado naquelas que foram mantidas sem estresse de água na fase de viveiro. Isso garantiu que as plantas sobrevivessem por um período menor sem água, variando de 14 a 20 dias (com e sem hidrogel, respectivamente), enquanto, no solo arenoso, a sobrevivência foi maior, de 29 a 34 dias (com e sem hidrogel, respectivamente). Apesar da não significância estatística, os resultados com o hidrogel possibilitam, em ambos os solos, maior flexibilidade operacional na intervenção com novas irrigações.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brain-Computer Interfaces (BCI) have as main purpose to establish a communication path with the central nervous system (CNS) independently from the standard pathway (nervous, muscles), aiming to control a device. The main objective of the current research is to develop an off-line BCI that separates the different EEG patterns resulting from strictly mental tasks performed by an experimental subject, comparing the effectiveness of different signal-preprocessing approaches. We also tested different classification approaches: all versus all, one versus one and a hierarchic classification approach. No preprocessing techniques were found able to improve the system performance. Furthermore, the hierarchic approach proved to be capable to produce results above the expected by literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern wireless systems employ adaptive techniques to provide high throughput while observing desired coverage, Quality of Service (QoS) and capacity. An alternative to further enhance data rate is to apply cognitive radio concepts, where a system is able to exploit unused spectrum on existing licensed bands by sensing the spectrum and opportunistically access unused portions. Techniques like Automatic Modulation Classification (AMC) could help or be vital for such scenarios. Usually, AMC implementations rely on some form of signal pre-processing, which may introduce a high computational cost or make assumptions about the received signal which may not hold (e.g. Gaussianity of noise). This work proposes a new method to perform AMC which uses a similarity measure from the Information Theoretic Learning (ITL) framework, known as correntropy coefficient. It is capable of extracting similarity measurements over a pair of random processes using higher order statistics, yielding in better similarity estimations than by using e.g. correlation coefficient. Experiments carried out by means of computer simulation show that the technique proposed in this paper presents a high rate success in classification of digital modulation, even in the presence of additive white gaussian noise (AWGN)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers