817 resultados para Chromium Alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid and sensitive method for separation and determination of Cr(VI) and Cr(III) in bottom mud of lake by flow injection on-line preconcentrtion system and GFAAS was developed. The available Cr(VI) and Cr(III) were extracted by HOAc or EDTA + NH4 NO3 and adsorbed simultaneously by an anion and a cation resin microclummn and then eluted simultaneously by 2 mol/L NH4 NO3 + 0.05 mol/L ascorbate and 2 mol/L H2SO4, respectively. The elution was performed for 50 s after adsorption for 2 min, and the efficiencies of elution were 85.4% - 94.8% and 96.7% - 106% for Cr(VI) and Cr(M) respectively. The detection limits of the method were 0.9 mu g/L and 2.7 mu g/L with relative standard deviations of 3.5% and 6.4% for the determination of Cr(VI) and Cr(III) in sample, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lattice constants, elasticity, band structure and piezoelectricity of hexagonal wideband gap BexZn1-xO ternary alloys are calculatedusing firstprinciples methods. The alloys' lattice constants obey Vegard's law well. As Be concentration increases, the bulk modulus and Young's modulus of the alloys increase, whereas the piezoelectricity decreases. We predict that BexZn1-xO/GaN/substrate (x = 0.022) multilayer structure can be suitable for high-frequency surface acoustic wave device applications. Our calculated results are in good agreement with experimental data and other theoretical calculations. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-Ga acceptor energy levels in GaN and random Al8In4Ga20N32 quaternary alloys are calculated using the first-principles band-structure method. We show that due to wave function localization, the MgGa acceptor energy level in the alloy is significantly lower than that of GaN, although the two materials have nearly identical band gaps. Our study demonstrates that forming AlxInyGa1-x-yN quaternary alloys can be a useful approach to lower acceptor ionization energy in the nitrides and thus provides an approach to overcome the p-type doping difficulty in the nitride system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlInGaN quaternary alloys were successfully grown on sapphire substrate by radio-frequency plasma-excited molecular beam epitaxy (RF-MBE). AlInGaN quaternary alloys with different compositions were acquired by changing the Al cell's temperature. The streaky RHEED patterns were observed during AlInGaN quaternary alloys growth. Scanning Electron Microscope (SEM), Rutherford back-scattering spectrometry (RBS), X-Ray diffraction (XRD) and Cathodoluminescence (CL) were used to characterize the structural and optical properties of the AlInGaN alloys. The experimental results show that the AlInGaN quaternary alloys grow on the GaN buffer in the layer-by-layer growth mode. When the Al cell's temperature is 920 degrees C, the Al/In ratio in the AlInGaN quaternary alloys is about 4.7, and the AlInGaN can acquire better crystal and optical quality. The X-ray and CL full-width at half-maximum (FWHM) of the AlInGaN are 5arcmin and 25nm, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the first-principles band-structure method, we investigate the p-type doping properties and band structural parameters of the random Ga1-xInxN1-yAsy quaternary alloys. We show that the Mg-Ga substitution is a better choice than ZnGa to realize the p-type doping because of the lower transition energy level and lower formation energy. The natural valence band alignment of GaAs and GaInNAs alloys is also calculated, and we find that the valence band maximum becomes higher with the increasing in composition. Therefore, we can tailor the band offset as desired which is helpful to confine the electrons effectively in optoelectronic devices. (C) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GaN-rich side of GaNP ternary alloys has been successfully synthesized by light-radiation heating and low-pressure metal-organic chemical vapor deposition. X-ray diffraction (XRD) rocking curves show that the ( 0002) peak of GaNP shifts to a smaller angle with increasing P content. From the GaNP photoluminescence (PL) spectra, the red shifts from the band-edge emission of GaN are determined to be 73, 78 and 100 meV, respectively, in the GaNP alloys with the P contents of 1.5%, 5.5% and 7.5%. No PL peak or XRD peak related to GaP is observed, indicating that phase separation induced by the short-range distribution of GaP-rich regions in the GaNP layer has been effectively suppressed. The phase-separation suppression in the GaNP layer is associated with the high growth rate and the quick cooling rate under the given growth conditions, which can efficiently restrain the accumulation of P atoms in the GaNP layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-Al-content InxAlyGa1-x-yN (x = 1-10%, y = 34-45%) quaternary alloys were grown on sapphire by radio-frequency plasma-excited molecular beam epitaxy. Rutherford back-scattering spectrometry, high resolution x-ray diffraction and cathodoluminescence were used to characterize the InAlGaN alloys. The experimental results show that InAlGaN with an appropriate Al/In ratio (near 4.7, which is a lattice-match to the GaN under-layer) has better crystal and optical quality than the InAlGaN alloys whose Al/In ratios are far from 4.7. Some cracks and V-defects occur in high-Al/In-ratio InAlGaN alloys. In the CL image, the cracks and V-defect regions are the emission-enhanced regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using microphotoluminescence (mu-PL), in dilute N GaAs1-xNx alloys, we observe a PL band far above the bandgap E-0 with its peak energy following the so-called E+ transition, but with contribution from perturbed GaAs host states in a broad spectral range (> 100 meV). This finding is in sharp contrast to the general understanding that E+ is associated with a well-defined conduction band level (either L-1c or N-x). Beyond this insight regarding the strong perturbation of the GaAs band structure caused by N incorporation, we demonstrate that a small amount of isoelectronic doping in conjunction with mu-PL allows direct observation of above-bandgap transitions that are not usually accessible by PL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the two samples of AIInGaN, i.e., 1-mum GaN grown at 1030degreesC on the buffer and followed by a 0.6-mum-thick epilayer of AIInGaN under the low pressure of 76 Torr and the AIInGaN layer deposited directly on the buffer layer without the high-temperature GaN layer, by temperature-dependent photoluminescence (PL) spectroscopy and picosecond time-resolved photoluminescence (TRPL) spectroscopy. The TRPL signals of both the samples were fitted well as a stretched exponential decay at all temperatures, indicating significant disorder in the material. We attribute the disorder to nanoscale quantum dots or discs of high indium concentration. Temperature dependence of dispersive exponent beta shows that the stretched exponential decay of the two samples comes from different mechanisms. The different depths of the localization potential account for the difference, which is illustrated by the results of temperature dependence of radiative recombination lifetime and PL peak energy.