949 resultados para Change Pattern
Resumo:
This study explores organizational capability and culture change through a project developing an assurance of learning program in a business school. In order to compete internationally for high quality faculty, students, strategic partnerships and research collaborations it is essential for Universities to develop and maintain an international focus and a quality produce that predicts excellence in the student experience and graduate outcomes that meet industry needs. Developing, marketing and delivering that quality product requires an organizational strategy to which all members of the organization contribute and adhere. Now, the ability to acquire, share and utilize knowledge has become a critical organizational capability in academia as well as other industries. Traditionally the functional approach to business school structures and disparate nature of the social networks and work contact limit the sharing of knowledge between academics working in different disciplines. In this project a community of practice program was established to include academics in the development of an embedded assurance of learning program affecting more than 5000 undergraduate students and 250 academics from nine different disciplines across four schools. The primary outcome from the fully developed and implemented assurance of learning program was the five year accreditation of the business schools programs by two international accrediting bodies, EQUIS and AACSB. However this study explores a different outcome, namely the change in organizational culture and individual capabilities as academics worked together in teaching and learning teams. This study uses a survey and interviews with academics involved, through a retrospective panel design which contained an experimental group and a control group. Results offer insights into communities of practice as a means of addressing organizational capability and changes in organizational culture. Knowledge management and shared learning can achieve strategic and operational benefits equally within academia as within other industrial enterprises but it comes at a cost. Traditional structures, academics that act like individual contractors and deep divides across research, teaching and service interest served a different master and required fewer resources. Collaborative structures; fewer master categories of discrete knowledge areas; specific strategic goals; greater links between academics and industry; and the means to share learned insights will require a different approach to resourcing both the individual and the team.
Resumo:
Activated protein C resistance (APCR), the most common risk factor for venous thrombosis, is the result of a G to A base substitution at nucleotide 1691 (R506Q) in the factor V gene. Current techniques to detect the factor V Leiden mutation, such as determination of restriction length polymorphisms, do not have the capacity to screen large numbers of samples in a rapid, cost- effective test. The aim of this study was to apply the first nucleotide change (FNC) technology, to the detection of the factor V Leiden mutation. After preliminary amplification of genomic DNA by polymerase chain reaction (PCR), an allele-specific primer was hybridised to the PCR product and extended using fluorescent terminating dideoxynucleotides which were detected by colorimetric assay. Using this ELISA-based assay, the prevalence of the factor V Leiden mutation was determined in an Australian blood donor population (n = 500). A total of 18 heterozygotes were identified (3.6%) and all of these were confirmed with conventional MnlI restriction digest. No homozygotes for the variant allele were detected. We conclude from this study that the frequency of 3.6% is compatible with others published for Caucasian populations. In addition, the FNC technology shows promise as the basis for a rapid, automated DNA based test for factor V Leiden.
Resumo:
This magazine, written by Melissa Giles, features three Brisbane-based media organisations: Radio 4RPH, Queensland Pride and 98.9FM. The PDF file on this website contains a text-only version of the magazine. Contact the author if you would like a copy of the text-only EPUB file or a copy of the full digital magazine with images. An audio version of the magazine is available at http://eprints.qut.edu.au/41729/
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Resumo:
Significant responsibility has been given to schools and sectors to interpret and plan for assessment within the Australian Curriculum. As schools take this opportunity to review and renew their school curriculum, it is important for teachers and school leaders to take the time to work out whether there are any assessment myths lurking in the conversations or assumptions that need to be challenged. Outdated myths or cultural narratives of learning can limit our thinking and student learning, without us being aware of it.
Resumo:
The relationship between change in organisations and communication about change in organisations can be analysed as a particular case of a general debate in social theory about the extent to which reality is socially constructed. Social constructivists emphasise the role of language in the construction of social realities, enacted through controlling the message agenda; material determinists assert that economic and social structural factors are more constitutive of reality as seen in strategies emphasising structural and resource interventions. Here we define a third view of language and materiality - one that leads to the potential for a reflexive, experimental approach to change based on the view that organisations are complex evolving systems.
Resumo:
Research found that today’s organisations are increasingly aware of the potential barriers and perceived challenges associated with the successful delivery of change — including cultural and sub-cultural indifferences; financial constraints; restricted timelines; insufficient senior management support; fragmented key stakeholder commitment; and inadequate training. The delivery and application of Innovative Change (see glossary) within a construction industry organisation tends to require a certain level of ‘readiness’. This readiness is the combination of an organisation’s ability to part from undertakings that may be old, traditional, or inefficient; and then being able to readily adopt a procedure or initiative which is new, improved, or more efficient. Despite the construction industry’s awareness of the various threats and opportunities associated with the delivery of change, research found little attention is currently given to develop a ‘decision-making framework’ that comprises measurable elements (dynamics) that may assist in more accurately determining an organisation’s level of readiness or ability to deliver innovative change. To resolve this, an initial Background Literature Review in 2004 identified six such dynamics, those of Change, Innovation, Implementation, Culture, Leadership, and Training and Education, which were then hypothesised to be key components of a ‘Conceptual Decision-making Framework’ (CDF) for delivering innovative change within an organisation. To support this hypothesis, a second (more extensive) Literature Review was undertaken from late 2007 to mid 2009. A Delphi study was embarked on in June 2008, inviting fifteen building and construction industry members to form a panel and take part in a Delphi study. The selection criterion required panel members to have senior positions (manager and above) within a recognised field or occupation, and to have experience, understanding and / or knowledge in the process of delivering change within organisations. The final panel comprised nine representatives from private and public industry organisations and tertiary / research and development (R&D) universities. The Delphi study developed, distributed and collated two rounds of survey questionnaires over a four-month period, comprising open-ended and closed questions (referred to as factors). The first round of Delphi survey questionnaires were distributed to the panel in August 2008, asking them to rate the relevancy of the six hypothesised dynamics. In early September 2008, round-one responses were returned, analysed and documented. From this, an additional three dynamics were identified and confirmed by the panel as being highly relevant during the decision-making process when delivering innovative change within an organisation. The additional dynamics (‘Knowledge-sharing and Management’; ‘Business Process Requirements’; and ‘Life-cycle Costs’) were then added to the first six dynamics and used to populate the second (final) Delphi survey questionnaire. This was distributed to the same nine panel members in October 2008, this time asking them to rate the relevancy of all nine dynamics. In November 2008, round-two responses were returned, analysed, summarised and documented. Final results confirmed stability in responses and met Delphi study guidelines. The final contribution is twofold. Firstly, findings confirm all nine dynamics as key components of the proposed CDF for delivering innovative change within an organisation. Secondly, the future development and testing of an ‘Innovative Change Delivery Process’ (ICDP) is proposed, one that is underpinned by an ‘Innovative Change Decision-making Framework’ (ICDF), an ‘Innovative Change Delivery Analysis’ (ICDA) program, and an ‘Innovative Change Delivery Guide’ (ICDG).
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.