947 resultados para COMPOUND-I FORMATION
Resumo:
The synthesis and characterization of two new polyphenylphenyl compounds is reported. One compound (CPP) acts as a blue light-emitting material, but contains strong electron-accepting groups that form exciplexes with electron-donating arylamines that are widely used as hole-transporting materials. Inserting a layer of the other compound into the organic light-emitting diodes (see figure) suppresses the formation of exciplexes, and gives high-efficiency blue-light emission from the CPP layer.
Resumo:
Regular micrometer-size porous polystyrene film is prepared by water droplet templating, i.e. breath figures are stabilized by the polymer in solution and thermocapillary flow arranges them into ordered packing. The influences of polystyrene molecular weight, solvent properties, and the relative humidity of atmosphere on the pattern formation and hole sizes are investigated. Two different kinds of hole packing fashion are also observed and their formation mechanisms are discussed.
Resumo:
The dewetting process of thin polystyrene (PS) film with built-in ordered disturbance by capillary force lithography (CFL) has. been investigated in situ by AFM. Two different phenomena are observed depending on the excess surface energy (DeltaF(gamma)) of the system. When DeltaF(gamma) is less than a certain critical value (i.e., the disturbance amplitude is under a critical value), the PS film would be flattened and become stable finally by heating above T-g. While, if the size of the disturbance amplitude is larger than the critical value, ordered PS liquid droplets form by further dewetting. The pattern formation mechanisms and influencing factors have been discussed in detail.
Resumo:
Submonolayer thin films of a three-ring bent-core (that is, banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were prepared by the vacuum-deposition method, and their morphologies, structures, and phase behavior were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The films have island shapes ranging from compact elliptic or circular patterns at low temperatures (below 40 degreesC) to branched patterns at high temperatures (above 60 degreesC). This shape evolution is contrary to the prediction based on the traditional diffusion-limited aggregation (DLA) theory. AFM observations revealed that two different mechanisms governed the film growth, in which the compact islands were formed via a dewetting-like behavior, while the branched islands diffusion-mediated. It is suggested m-OSB forms a two-dimensional, liquid crystal at the low-temperature substrate that is responsible for the unusual formation of compact islands. All of the monolayer islands are unstable and apt to transform to slender bilayer crystals at room temperature. This phase transition results from the peculiar molecular shape and packing of the bent-core molecules and is interpreted as escaping from macroscopic net polarization by the formation of an antiferroelectric alignment.
Resumo:
In this paper, four novel silver(I) sulfonate coordination polymers containing neutral ligands, namely, [Ag(2)Ll (biim)(2)]center dot 2H(2)O (1). AgL2(biim) (2), [Ag(HL3)(Pic)(2)]center dot H2O (3), and [Ag-3(L3)(HL3)(4,4'-bipy)(3)(H2O)(2)]center dot 4H(2)O (4), have been synthesized [L1 = 3-carboxy-4-hydroxybenzenesulfonate, L2 = p-aminobenzenesulfonate, H(2)L3 = p-hydroxybenzenesulfonic acid, biim = 1,1'-(1.4-butanediyl)-bis(imidazole), Pic = beta-picoline, 4,4'-bipy = 4,4'-bipyridine]. For compounds 1 and 2, Ag(I) cations are bridged by biim ligands to form a one-dimensional (1D) "zigzag" chain, and L1 and L2 sulfonate ligands are not coordinated to the silver cation. Compound 3 has a dimeric structure in which two silver cations are bridged by two HL3 ligands. For compound 4, L3 ligand coordinates to a silver cation as a monodentate ligand, and Ag(l) cations are bridged by 4,4'-bipy ligands to form a ID chain. Compound 1 contains water dimers, while compound 4 contains water trimers. Compounds 1-3 display room-temperature photoluminescence.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.
Resumo:
This paper presents a straightforward method for patterning thin films of polymers, i.e. a prepatterned mask is used to induce self-assembly of polymers and the resulting pattern is the same as the lateral structures in the mask on a submicrometre length scale, The patterns can be formed at above T-g + 30 degreesC in a short time and the external electric field is not crucial. Electrostatic force is assumed to be the driving force for the pattern transfer. Viscous fingering and novel stress-relief lateral morphology induced under the featureless mask are also observed and the formation mechanisms are discussed.
Resumo:
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10
Resumo:
Radiation crosslinking of carboxymethylcellulose (CMC) with a degree of substitution (DS) from 0.7 to 2.2 was the subject of the current investigation. CMC was irradiated in solid-state and aqueous solutions at various irradiation doses. The DS and the concentration of the aqueous solution had a remarkable affect on the crosslinking of CMC. Irradiation of CMC, even with a high DS, 2.2 in solid state, and a low DS, 0.7 in 10% aqueous solution, resulted in degradation. However, it was found that irradiation of CMC with a relatively high DS, 1.32, led to crosslinking in a 5% aqueous solution, and 20% CMC gave the highest gel fraction. CMC with a DS of 2.2 induced higher crosslinking than that with a DS of 1.32 at lower doses with the same concentration. Hence, it was apparent that a high DS and a high concentration in an aqueous solution were favorable for high crosslinking of CMC. It is assumed that; high radiation crosslinking of CMC was induced by the increased mobility of its molecules in water and by the formation of CMC radicals from the abstraction of H atoms from macromolecules in the intermediate products of water radiolysis. A preliminary biodegradation study confirmed that crosslinked CMC hydrogel can be digested by a cellulase enzyme. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The catalytic behaviors of a novel liquid acid catalyst (composed of heteropolyacid and acetic acid) for alkylation of isobutane with butene was investigated. As a solvent acetic acid had a synergistic effect. It enhanced the acid strength of HPA and its stability. The conditions for the formation of the catalytically active phase were studied systematically. The content of crystal water of HPA and the quantity of solvent affect the formation of active phase and the catalytic activity. Catalytically active phase consists of HPA, acetic acid and hydrocarbon produced from the reaction, as well as traces of water from the crystal water of HPA. This catalyst system is comparable to the sulfuric acid in catalytic activity.
Resumo:
A novel liquid acid catalyst, composed of heteropolyacid and acetic acid for the alkylation of isobutane with butenes is reported. The conditions for the formation of catalytic active phase as well as its catalytic behaviors in alkylation of isobutane with butenes have been studied. It was found that acetic acid, as a solvent, exerts a synergistic effect on the acid strength of heteropolyacid, and the contents of crystal water in HPAs have influence over the formation of active phase and the catalytic activity. This novel catalyst is comparable to the sulfuric acid in catalytic activity.
Resumo:
This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Crystallization behavior and spherulitic structure of linear high-density polyethylene (HDPE), after being irradiated in its molten state by gamma -rays, was investigated by small-angle laser scattering (SALS) and differential scanning calorimetry (DSC). Significant changes in the crystallization of HDPE during cooling in air before and after being irradiated in the melt were observed. A critical minimum average molar mass between cross-links (200 carbon-carbon bonds) for spherulite formation in such an irradiated HDPE network was obtained.
Resumo:
The steady-state fluorescence properties of naphthalene-labeled polymers dispersed in poly(methyl methacrylate) (PMMA) cast films were studied under tensile loadings at 80 degreesC. The labeled polymers were composed of methyl methacrylate (MMA) and 1-naphthylmethyl methacrylate (NMMA). Three of the copolymers were used in this work, and the contents of NMMA were 0.59 mol % (CP1), 22.0 mol % (CP2), and 56.7 mol % (CP3), respectively. The fluorescence spectra of the films containing CP1 and CP2were unchanged during elongation. For the film containing CP3, the excited monomer emission of naphthyl groups at around 337 nm decreased with increasing applied tensile strain. The strain enhanced the emission ascribed to the excimer of the naphthyl groups in the region of 390-420 nm. The ratio of fluorescence intensities at 400 nm and 337 mn, I-400/I-337, increased with the applied strain, which indicates that CP3 is a sensitive probe for detecting the structural changes of polymer matrices. The obtained results mean that the excimer-forming sites in the PMMA films during elongation depend both on the applied strain and the concentration of naphthyl groups in the dispersed polymer probes. (C) 2001 John Wiley & Sons, Inc.