924 resultados para COLLOIDAL SILVER NANOPARTICLES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold-core platinum-shell (Au@Pt) nanoparticles with ultrathin platinum overlayers, ranging from submonolayer to two monolayers of platinum atoms, were prepared at room-temperature using a scalable, wet-chemical synthesis route. The synthesis involved the reduction of chloroauric acid with tannic acid to form 5 nm (nominal dia.) gold nanoparticles followed by addition of desired amount of chloroplatinic acid and hydrazine to form platinum overlayers with bulk Pt/Au atomic ratios (Pt surface coverages) corresponding to 0.19 (half monolayer), 0.39 (monolayer), 0.58 (1.5 monolayer) and 0.88 (2 monolayers). The colloidal particles were coated with octadecanethiol and phase-transferred into chlroform-hexane mixture to facilitate sample preparation for structural characterization. The structure of the resultant nanoparticles were determined to be Au@Pt using HRTEM, SAED, XPS, UV-vis and confirmed by cyclic voltammetry (CV) studies. Monolayers of octadecanethiol coated Au@Pt nanoparticles were self-assembled at an air-water interface and transfer printed twice onto a gold substrate to form bilayer films for electrochemical characterization. Electrochemical activity on such films was observed only after the removal of the octadecanethiol ligand coating the nanoparticles, using a RF plasma etching process. The electrochemical activity (HOR, MOR studies) of Au@Pt nanoparticles was found to be highest for particles having a two atom thick platinum overlayer. These nanoparticles can significantly enhance platinum utilization in electrocatalytic applications as their platinum content based activity was three times higher than pure platinum nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP: PS size ratios, xi = 0.14 and 2.76 (where, xi = M-g/M-m, M-g and M-m being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with xi = 0.14 could be modeled reasonably well, while the structure of blends with xi = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with xi = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with xi = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal systems offer an effective medium to micro-engineer complex structures without involving sophisticated fabrication procedures. This article presents a deployment strategy of multiple droplets of different colloidal composition and utilizes the inherent capillary flow driven self assembly of nanoparticles to construct stacks of multiple materials on a given glass substrate. Here we used aqueous nano-crystalline titania and nano-amorphous silica solutions as the two materials. Initially, a pure nanotitania (nanosilica) droplet is deployed and allowed to dry partially. Subsequently, a second droplet of pure nanosilica (nanotitania) is deployed co-axially on the partially dried precipitate. The proposed deployment strategy allowed significant morphological differences when the deployment order of nanosilica and nanotitania were interchanged. Compositional analysis performed using EDX (Energy Dispersive X-ray spectroscopy) showed preferential deposition of nanosilica and nanotitania along the radial as well as the axial plane of the final deposit pattern. The underlying mechanism for such a phenomenon could be attributed to the contact line dynamics of a sessile double droplet. We also observe heteroaggregation of the nanosilica-nanotitania interaction along a narrow interface which resulted in nanotitania particles clustering into isolated islands embedded into a matrix of nanosilica particles. Overall, this work elucidates the evaporation driven dynamics of a mixed colloidal system which displays both macroscopic as well as microscopic phenomena. Such a system could be used to generate ordered arrays of functional materials with engineered micro to nano-scale properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the processes involved in the nucleation of colloidal lead selenide nanoparticles. Our studies show that an unusual pathway - an anion exchange reaction, causes the nucleation of lead selenide nanocrystals. In this process, one quantum dot is transformed into another due to a substitution of its constituent anions. The existence of this pathway was never anticipated perhaps due to its unusually rapid kinetics. The nucleation and growth kinetics of colloidal lead selenide quantum dots are found to fit well to a two-step process. The rate constant associated with the anion exchange process is found to be four orders of magnitude greater than that of the nanocrystal growth. The complete consumption of the initial oxide nanoparticle thus provides a sharp, temporally well-defined nucleation event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrated optical amplification at 1550 nm with a carbon tetrachloride solution of Er3+-Yb3+ codoped NaYF4 nanocubes synthesized with solvo-thermal route. Upon excitation with a 980 nm laser diode, the nanocube solution exhibited strong near-infrared emission by the I-4(13/2) -> I-4(15/2) transition of Er3+ ions due to energy transfer from Yb3+ ions. We obtained the highest optical gain coefficient at 1550 nm of 0.58 cm(-1) for the solution with the pumping power of 200 mW. This colloidal solution might be a promising candidate as a liquid medium for optical amplifier and laser at the optical communication wavelength. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ag/Si nanocomposite films were prepared by the radio-frequency magnetron cosputtering method. The fine structure of the plasmon resonance absorption peak was found in film samples. X-ray photoelectron spectroscopy analysis indicated that the samples were composed of a two-layer structure, which accounted for the structure of the optical absorption spectra. The peak located near 445 nm is the plasmon resonance absorption peak of Ag nanoparticles embedded in a partially oxidized Si matrix. Its intensity decreases with decreasing film thickness and disappears in a very thin sample. The peak located near 380 nm originates from the plasmon resonance absorption of the thoroughly oxidized surface layer of the sample. Its intensity does not change with increasing thickness, but it cannot be observed in the very thick sample. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO,), TA (bottom layer was pure TiO,, surface layer was Ag modified), TT (pure TiO, thin film) and AA (TiO, thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (I-ph). LSV confirmed the existence of Ago state in the TiO, thin film. SEM and XRD experiments indicated that the sizes of the TiO,, nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium aluminate spinel crystals (MgAl2O4 (1 1 0)) deposited with 30 nm Cu film on surface were implanted with 110 key Ar-ions to a fluence of 1.0 x 10(17) ions/cm(2) at 350 degrees C, and then annealed in vacuum condition at the temperature of 500, 600, 700, 800 and 900 degrees C for 1 h, respectively. Ultraviolet-visible spectrometry (UV-VIS), scanning electron microscopy (SEM), Rutherford backscattering (RBS) and transmission electron microscopy (TEM) were adopted to analyze the specimens. After implantation, the appearance of surface plasmon resonance (SPR) absorbance peak in the UV-VIS spectrum indicated the formation of Cu nanoparticles, and the TEM results for 500 degrees C also confirmed the formation of Cu nanoparticles at near-surface region. In annealing process, The SPR absorbance intensity increased at 500 and 700 degrees C, decreased with a blue shift of the peak position at 600 and 800 degrees C, and the peak disappeared at 900 degrees C. The SPR absorbance intensity evolution with temperature was discussed combined with other measurement results (RBS, SEM and TEM). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We produced silver tubes with an outer diameter of 1 mu m, wall thickness of 200 nm, and length of hundreds of micrometers by hydrothermal treatment of aqueous solutions of AgNO3 and hyperbranched polyglycidol (HPG) at 165 degrees C. The surfaces of the silver tubes were chemically modified by HPG, which was confirmed by FTIR of the silver tubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report the first application of water-soluble fluorescent Ag nanoclusters in fluorescent sensors. The fluorescence of poly(methacrylic acid) (PMAA)-templated Ag nanoclusters was found to be quenched effectively by Cu2+, but not when other common metal ions were present. By virtue of the specific response toward the analyte, a new, simple, and sensitive fluorescent method for detecting Cu2+ has been developed based on Ag nanoclusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a facile one-pot process to synthesize Ag nanoplates by reducing silver nitrate with 3,3',5,5'-tetramethylbenzidine (TMB) at room temperature. The silver nanoplates were highly oriented single crystals with (111) planes as the basal planes. TMB can be readily oxidized to charge-transfer (CT) complex between TMB, as a donor, and (TMB)(2+), as an acceptor. The pi-pi interaction of the neutral amine (TMB) and diiminium structure (dication, TMB2+) result in the formation of one-dimensional CT complex nanofiber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present a simple wet-chemical approach to synthesize flower-like silver nanostrip assembling architecture at room temperature. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images indicate that these microstructures with the diameter of similar to 500nm exhibit hietarchical characteristic. X-ray diffraction (XRD), energy-dispersed X-ray spectroscopy (EDX) and Raman spectroscopy indicate that poly (o-diaminobenzene) (PDB) also exists in the silver hierarchical microstructure.