949 resultados para CHANGE-POINT
Resumo:
The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.
Resumo:
The challenges facing the Singapore education system in the new millennium are unique and unprecedented in Asia. Demands for new skills, knowledges, and flexible competencies for globalised economies and cosmopolitan cultures will require system-wide innovation and reform. But there is a dearth of international benchmarks and prototypes for such reforms. This paper describes the current Core Research Program underway at the National Institute of Education in Singapore, a multilevel analysis of Singaporean schooling, pedagogy, youth and educational outcomes. It describes student background, performance, classroom practices, student artefacts and outcomes, and student longitudinal life pathways. The case is made that a systematic focus on teachers' and students' work in everyday classroom contexts is the necessary starting point for pedagogical innovation and change. This, it is argued, can constitute a rich multidisciplinary evidence base for educational policy. (Contains 1 figure, 1 table and 3 notes.)
Resumo:
This paper describes the development and evaluation of a tactical lane change model using the forward search algorithm, for use in a traffic simulator. The tactical lane change model constructs a set of possible choices of near-term maneuver sequences available to the driver and selects the lane change action at the present time to realize the best maneuver plan. Including near term maneuver planning in the driver behavior model can allow a better representation of the complex interactions in situations such as a weaving section and high-occupancy vehicle (HOV) lane systems where drivers must weave across several lanes in order to access the HOV lanes. To support the investigation, a longitudinal control model and a basic lane change model were also analyzed. The basic lane change model is similar to those used by today's commonly-used traffic simulators. Parameters in all models were best-fit estimated for selected vehicles from a real-world freeway vehicle trajectory data set. The best-fit estimation procedure minimizes the discrepancy between the model vehicle and real vehicle's trajectories. With the best fit parameters, the proposed tactical lane change model gave a better overall performance for a greater number of cases than the basic lane change model.
Resumo:
The Lane Change Test (LCT) is one of the growing number of methods developed to quantify driving performance degradation brought about by the use of in-vehicle devices. Beyond its validity and reliability, for such a test to be of practical use, it must also be sensitive to the varied demands of individual tasks. The current study evaluated the ability of several recent LCT lateral control and event detection parameters to discriminate between visual-manual and cognitive surrogate In-Vehicle Information System tasks with different levels of demand. Twenty-seven participants (mean age 24.4 years) completed a PC version of the LCT while performing visual search and math problem solving tasks. A number of the lateral control metrics were found to be sensitive to task differences, but the event detection metrics were less able to discriminate between tasks. The mean deviation and lane excursion measures were able to distinguish between the visual and cognitive tasks, but were less sensitive to the different levels of task demand. The other LCT metrics examined were less sensitive to task differences. A major factor influencing the sensitivity of at least some of the LCT metrics could be the type of lane change instructions given to participants. The provision of clear and explicit lane change instructions and further refinement of its metrics will be essential for increasing the utility of the LCT as an evaluation tool.
Resumo:
About this book: Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including:key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity,ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate.The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system.
Resumo:
Camera calibration information is required in order for multiple camera networks to deliver more than the sum of many single camera systems. Methods exist for manually calibrating cameras with high accuracy. Manually calibrating networks with many cameras is, however, time consuming, expensive and impractical for networks that undergo frequent change. For this reason, automatic calibration techniques have been vigorously researched in recent years. Fully automatic calibration methods depend on the ability to automatically find point correspondences between overlapping views. In typical camera networks, cameras are placed far apart to maximise coverage. This is referred to as a wide base-line scenario. Finding sufficient correspondences for camera calibration in wide base-line scenarios presents a significant challenge. This thesis focuses on developing more effective and efficient techniques for finding correspondences in uncalibrated, wide baseline, multiple-camera scenarios. The project consists of two major areas of work. The first is the development of more effective and efficient view covariant local feature extractors. The second area involves finding methods to extract scene information using the information contained in a limited set of matched affine features. Several novel affine adaptation techniques for salient features have been developed. A method is presented for efficiently computing the discrete scale space primal sketch of local image features. A scale selection method was implemented that makes use of the primal sketch. The primal sketch-based scale selection method has several advantages over the existing methods. It allows greater freedom in how the scale space is sampled, enables more accurate scale selection, is more effective at combining different functions for spatial position and scale selection, and leads to greater computational efficiency. Existing affine adaptation methods make use of the second moment matrix to estimate the local affine shape of local image features. In this thesis, it is shown that the Hessian matrix can be used in a similar way to estimate local feature shape. The Hessian matrix is effective for estimating the shape of blob-like structures, but is less effective for corner structures. It is simpler to compute than the second moment matrix, leading to a significant reduction in computational cost. A wide baseline dense correspondence extraction system, called WiDense, is presented in this thesis. It allows the extraction of large numbers of additional accurate correspondences, given only a few initial putative correspondences. It consists of the following algorithms: An affine region alignment algorithm that ensures accurate alignment between matched features; A method for extracting more matches in the vicinity of a matched pair of affine features, using the alignment information contained in the match; An algorithm for extracting large numbers of highly accurate point correspondences from an aligned pair of feature regions. Experiments show that the correspondences generated by the WiDense system improves the success rate of computing the epipolar geometry of very widely separated views. This new method is successful in many cases where the features produced by the best wide baseline matching algorithms are insufficient for computing the scene geometry.
Resumo:
Grassland management affects soil organic carbon (SOC) storage and can be used to mitigate greenhouse gas emissions. However, for a country to assess emission reductions due to grassland management, there must be an inventory method for estimating the change in SOC storage. The Intergovernmental Panel on Climate Change (IPCC) has developed a simple carbon accounting approach for this purpose, and here we derive new grassland management factors that represent the effect of changing management on carbon storage for this method. Our literature search identified 49 studies dealing with effects of management practices that either degraded or improved conditions relative to nominally managed grasslands. On average, degradation reduced SOC storage to 95% +/- 0.06 and 97% +/- 0.05 of carbon stored under nominal conditions in temperate and tropical regions, respectively. In contrast, improving grasslands with a single management activity enhanced SOC storage by 14% 0.06 and 17% +/- 0.05 in temperate and tropical regions, respectively, and with an additional improvement(s), storage increased by another 11% +/- 0.04. We applied the newly derived factor coefficients to analyze C sequestration potential for managed grasslands in the U.S., and found that over a 20-year period changing management could sequester from 5 to 142 Tg C yr(-1) or 0.1 to 0.9 Mg C ha(-1) yr(-1), depending on the level of change. This analysis provides revised factor coefficients for the IPCC method that can be used to estimate impacts of management; it also provides a methodological framework for countries to derive factor coefficients specific to conditions in their region.
Resumo:
The potential to sequester atmospheric carbon in agricultural and forest soils to offset greenhouse gas emissions has generated interest in measuring changes in soil carbon resulting from changes in land management. However, inherent spatial variability of soil carbon limits the precision of measurement of changes in soil carbon and hence, the ability to detect changes. We analyzed variability of soil carbon by intensively sampling sites under different land management as a step toward developing efficient soil sampling designs. Sites were tilled crop-land and a mixed deciduous forest in Tennessee, and old-growth and second-growth coniferous forest in western Washington, USA. Six soil cores within each of three microplots were taken as an initial sample and an additional six cores were taken to simulate resampling. Soil C variability was greater in Washington than in Tennessee, and greater in less disturbed than in more disturbed sites. Using this protocol, our data suggest that differences on the order of 2.0 Mg C ha(-1) could be detected by collection and analysis of cores from at least five (tilled) or two (forest) microplots in Tennessee. More spatial variability in the forested sites in Washington increased the minimum detectable difference, but these systems, consisting of low C content sandy soil with irregularly distributed pockets of organic C in buried logs, are likely to rank among the most spatially heterogeneous of systems. Our results clearly indicate that consistent intramicroplot differences at all sites will enable detection of much more modest changes if the same microplots are resampled.
Resumo:
Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In this article our starting point is the current context of national curriculum change and intense speculation about the assessment, standards and reporting. It is written against a background of accountability measures and improvement imperatives, and focuses attention on standards as offering representations of quality. We understand standards to be constructs that aim to achieve public credibility and utility. Further, they can be examined for the purposes they seek to serve and also their expected functions. Fitness for purpose is therefore a useful notion in considering the nature of standards. Our interest in the discussion is the ‘fit’ between how standards are formulated and how they are used in practice, by whom and for what purposes. A related interest is in the matter of how standards can be harnessed to realise improvement.
Resumo:
There is an urgent need to assess the vulnerability of eco-environmental health to climate change. This paper aims to provide an overview of current research, to identify knowledge gaps, and to propose future research needs in this challenging area. Evidence shows that climate change is affecting and will, in the future, have more (mostly adverse) impacts on ecosystems. Ecosystem degradation, particularly the decline of the life support systems, will undoubtedly affect human health and wellbeing. Therefore, it is important to develop a framework to assess the vulnerability of eco-environmental health to climate change, and to identify appropriate adaptation strategies to minimize the impact of climate change.