945 resultados para Brejos de altitude


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latitudinal or altitudinal variation in several anatomical characters of wood is common for woody dicotyledonous genera with a wide distribution, but whether such variation exists at the species level is disputed. Latitudinal and altitudinal trends in wood anatomy of Dodonaea viscosa were studied, using 102 samples collected between 41.2degrees S and 33.3degrees N latitude and 7-2750 in altitude. We studied variation in four quantitative features: vessel element length, fiber length, vessel frequency, and tangential vessel diameter. Ontogenetic trends were minimal with a slight decrease or increase in the innermost stem and were negligible among the studied specimens. Throughout the distributional range of the species, no latitudinal trends were detected in either the Northern or Southern Hemispheres, Altitudinal trends were also nonexistent, except for two features in specimens from China and Japan. Absence of latitudinal or altitudinal trends in this widely distributed species suggests that in some species the species-level variation in wood anatomy is not controlled by ecological gradients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-two populations of seven species of Cremanthodium from high altitude regions of western China were observed karyologically. C. ellisii, C. microglossum, C. brunneo-pilosum, C. stenoglossum, C. discoideum and C. lineare all had the same chromosome number of 2n=58 whereas C. humile had 2n=60. All chromosome numbers of these species are documented here for the first time. The basic number of x=30 is new for this genus. The karyotypes of all species belong to 2A type according to Stebbins' asymmetry classification of karyotypes. Two basic chromosome numbers, x=30 and x=29 in Cremanthodium, correspond exactly to two branching patterns in this genus, sympodial versus monopodial. The systematic and taxonomic statuses of the sympodial species need further study. The karyomorphological data provide no support to the sectional subdivision in Cremanthodium. (C) 2001 The Linnean Society of London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

轮腿复合移动机器人具有很好的地面适应能力和越障能力。本文通过对机器人系统结构的分析和其越障高度的静态分析,计算出机器人能够越障的最大高度,并提出了针对典型地形环境(沟、坎、台)越障问题的机器人构型优化以及轮腿运动协调控制算法,而且通过实验验证了算法的有效性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum and Natural Gas is an important strategic resources. The reserves of Petroleum and Natural Gas can’t meet the need of our country, which also blocks the development of economy and threatens the safety of national. Therefore, it makes a great sense to bring “the second round of oil & gas exploration” into effect and study the exploration of oil and gas of Pre-Cenozoic residual basins in China. The integrated geophysical exploration is the main way to research the Pre-Cenozoic residual basins. Gravity exploration is one of the most important exploration methods, which has played an important role in oil and gas prospecting, such as compartmentalizing geotectonic elements, delineating the distribution range of sedimentary basins, searching oil and gas structure, abstracting oil and gas information, and so on, from its naissance. The isostatic gravity anomalies is significant for exploration, which can help us research deep crustal structure, the equilibrium state of earth, the geologic structure of shallow crust, the basement shape of sedimentary basins and the genetic evolution of sedimentary basins. In the paper, we stress the implication and physical meanings systemically, and discuss the calculation theory. On the basis of previous work, we test different isostatic compensation models and parameters to find out their influences to the result of isostatic gravity anomalies. In addition, we improve the method of isostatic gravity anomalies calculation and give a system of isostatic gravity anomalies calculation which is proved has satisfying effect. From the research above, we find that the results of Platt model and Airy model are consistent, which have similar form and almost the same value. However, by contrast, the Airy model is proved has better adaptability than Platt model. The two main parameters——crust thickness and density difference of crust and mantle, both have influence to the isostatic gravity anomalies, but the latter have more. Finally, we adopt the regional field extending edge method to make the result more of actual geologic condition. On the methods above, we calculate the isostatic gravity anomalies field in Yellow Sea area from the Bouguer gravity anomalies and the water depth and altitude data. And then the isostatic gravity anomalies character is analyzed and the integrated geological-geophysical interpretation is made on the basis of summarizing the previous research result systemically and analyzing other geophysical data and geological information. From the research, we find that the Yellow Sea area belongs to continental type crust equilibrium regions, where the isostatic gravity anomalies field is placid and has less fluctuation values, which implies that the area is in equilibrium state to different extends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar ultraviolet (UV) radiation at wavelengths less than 400 nm is an important source of energy for aeronomic processes throughout the solar system. Solar UV photons are absorbed in planetary atmospheres, as well as throughout the heliosphere, via photodissociation of molecules, photoionization of molecules and atoms, and photoexcitation toexcitation including resonance scattering. In this paper, the solar irradiances data measured by TIMED SEE, as well as the solar proxies such as F10.7 and Mg II, thermosphere neutral density of CHAMP measurements and topside ionospheric plasmas densities from DMSP, are used to analyze solar irradiance effects on the variabilities of the thermosphere and the ionosphere. First, thermosphere densities near 410 km altitude are analyzed for solar irradiance variability effects during the period 2002-2004. Correlations between the densities and the solar irradiances for different spectral lines and wavelength ranges reveal significantly different characteristics. The density correlates remarkably well with all the selected solar irradiances except the lower chromospheric O I (130.4 nm) emission. Among the chosen solar proxies, the Mg II core-to-wing ratio index, EUV (30-120 nm) and F10.7 show the highest correlations with the density for short-term (< ~27 days) variations. For both long- (> ~27 days) and short-term variations, linear correlation coefficients exhibit a decreasing trend from low latitudes towards high latitudes. The density variability can be effectively modeled (capturing 71% of the variance) using multiple solar irradiance indices, including F10.7, SEUV (the EUV 30-120 nm index), and SFUV (the FUV 120-193 nm index), in which a lag time of 1 day was used for both F10.7 and SEUV, and 5 days for SFUV. In our regression formulation SEUV has the largest contribution to the density variation (40%), with the F10.7 having the next largest contribution (32%) and SFUV accounting for the rest (28%). Furthermore, a pronounced period of about 27.2 days (mean period of the Sun's rotation) is present in both density and solar irradiance data of 2003 and 2004, and a pronounced period of about 54.4 days (doubled period of the solar rotation) is also revealed in 2004. However, soft X-ray and FUV irradiances did not present a pronounced 54.4 day period in 2004, in spite of their high correlation with the densities. The Ap index also shows 54-day periodicities in 2004, and magnetic activity, together with solar irradiance, affects the 54-day variation in density significantly. In addition, NRLMSISE00, DTM-2000 and JB2006 model predictions are compared with density measurements from CHAMP to assess their accuracy, and the results show that these models underestimate the response of the thermosphere to variations induced by solar rotation. Next, the equatorial topside ionospheric plasmas densities Ni are analyzed for solar irradiance variability effects during the period 2002-2005. Linear correlations between Ni and the solar irradiances for different wavelength ranges reveal significantly different characteristics. XUV (0-35 nm) and EUV (115-130 nm) show higher correlation with Ni for the long-term variations, whereas EUV (35-115 nm) show higher correlation for the short-term variations. Moreover, partial correlation analysis shows that the long-term variations of Ni are affected by both XUV (0-35 nm) and EUV (35-115 nm), whereas XUV (0-35 nm) play a more important role; the short-term variations of Ni are mostly affected by EUV (35-115 nm). Furthermore, a pronounced period of about 27 days is present in both Ni and solar irradiance data of 2003 and 2004, and a pronounced period of about 54 days is also revealed in 2004. Finally, prompted by previous studies that have suggested solar EUV radiation as a means of driving the semiannual variation, we investigate the intra-annual variation in thermosphere neutral density near 400 km during 2002-2005. The intra-annual variation, commonly referred to as the ‘semiannual variation’, is characterized by significant latitude structure, hemispheric asymmetries, and inter-annual variability. The magnitude of the maximum yearly difference, from the yearly minimum to the yearly maximum, varies by as much as 60% from year to year, and the phases of the minima and maxima also change by 20-40 days from year to year. Each annual harmonic of the intra-annual variation, namely, annual, semiannual, ter-annual and quatra-annual, exhibits a decreasing trend from 2002 through 2005 that is correlated with the decline in solar activity. In addition, some variations in these harmonics are correlated with geomagnetic activity, as represented by the daily mean value of Kp. Recent empirical models of the thermosphere are found to be deficient in capturing most of the latitude dependencies discovered in our data. In addition, the solar flux and geomagnetic activity proxies that we have employed do not capture some latitude and inter-annual variations detected in our data. It is possible that these variations are partly due to other effects, such as seasonal-latitudinal variations in turbopause altitude (and hence O/N2 composition) and ionosphere coupling processes that remain to be discovered in the context of influencing the intra-annual variations depicted here. Our results provide a new dataset to challenge and validate thermosphere-ionosphere general circulation models that seek to delineate the thermosphere intra-annual variation and to understand the various competing mechanisms that may contribute to its existence and variability. We furthermore suggest that the term “intra-annual” variation be adopted to describe the variability in thermosphere and ionosphere parameters that is well-captured through a superposition of annual, semiannual, ter-annual, and quatra-annual harmonic terms, and that “semiannual’ be used strictly in reference to a pure 6-monthly sinusoidal variation. Moreover, we propose the term “intra-seasonal” to refer to those shorter-term variations that arise as residuals from the above Fourier representation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the variations of solar activity, solar EUV and X-ray radiations change over different timescales (e.g., from solar cycle variation to solar flare burst). Since solar EUV and X-ray radiations are the primary energy sources for the ionosphere, theirs variations undoubtedly produce significant and complicated effects on the ionosphere. So the variations of solar activity significantly affect the ionosphere. It is essential for both ionospheric theory and applications to study solar activity effects on the ionosphere. The study about solar activity variations of the ionosphere is an important part of the ionospheric climatology. It can enhance the understanding for the basic processes in the ionosphere, ionospheric structure and its change, ionosphere/thermosphere coupling, and so on. As for applications, people need sufficient knowledges about solar activity variations of the ionosphere in order to improve ionospheric models so that more accurate forecast for the ionospheric environments can be made. Presently, the whole image about the modalities of ionospheric solar activity variations is still unknown, and related mechanisms still cannot be well understood. This paper is about the effects of the 11-year change in solar activity to the low- and mid-latitude ionosphere. We use multi-type ionospheric observations and model to investigate solar activity effects on the electron density and ionospheric spatial structure, and we focus on discussing some related mechanisms. The main works are as follows: Firstly, solar activity variations of ionospheric peak electron density (NmF2) around 1400 LT were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trend of NmF2 with F107 depends on latitudes and seasons. There is obvious saturation trend in low latitudes in all seasons; while in middle latitudes, NmF2 increases linearly with F107 in winter but saturates with F107 at higher solar activity levels in the other seasons. We calculated the photochemical equilibrium electron density to discuss the effects induced by the changes of neutral atmosphere and dynamics processes on the solar activity variations of NmF2. We found that: (1) Seasonal variation of neutral atmosphere plays an important role in the seasonal difference of the solar activity variations of NmF2 in middle latitudes. (2) Less [O]/[N2] and higher neutral temperature are important for the saturation effect in summer, and the increase of vibrational excited N2 is also important for the saturation effect. (3) Dynamics processes can significantly weaken the increase of NmF2 when solar activity enhances, which is also a necessary factor for the saturation effect. Secondly, solar activity variations of nighttime NmF2 were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trends of NmF2 with F107 in nighttime are different from that in daytime in some cases, and the nighttime variation trends depend on seasons. There is linear increase trend in equinox nighttime, and saturation trend in summer nighttime, while the increase rate of NmF2 with F107 increases when solar activity enhances in winter nighttime (we term it with “amplification trend”). We discussed the possible mechanisms which affect the solar activity variations of nighttime NmF2. The primary conclusions are as follows: (1) In the equatorial ionization anomaly (EIA) crest region, the plasma influx induced by the pre-reversal enhancement (PRE) results in the change of the variation trend between NmF2 and F107 from “saturation” to “linear” after sunset in equinoxes and winter; while the recombination process at the F2-peak is the primary factor that affects the variation trend of NmF2 with F107 in middle latitudes. (2) The recombination coefficient at the F2-peak height reaches its maximum at moderate solar activity level in winter nighttime, which induces NmF2 attenuates more quickly at moderate solar activity level. This is the main reason for the amplification trend. (3) The change of the recombination process at the F2-peak with solar activity depends on the increases of neutral parameters (temperature, density et al.) and the F2-peak height (hmF2). The seasonal differences in the changes of neutral atmosphere and hmF2 with solar activity are the primary reasons for the seasonal difference in the variation trend of nighttime NmF2 with F107. Finally, we investigated the solar activity dependence of the topside ionosphere in low latitudes using ROCSAT-1 satellite (at 600 km altitude) observations. The primary results and conclusions are as follows: (1) Latitudinal distribution of the plasma density is local time, seasonal, and solar activity dependent. In daytime, there is a plasma density peak at the dip equator. The peak is obviously enhanced at high solar activity level, and the strength of the peak strongly depends on seasons. While at sunset, two profound plasma density peaks (double-peak structure) are found in solar maximum equinox months. (2) Local time dependence of the latitudinal distribution is due to the local time variation of the equatorial dynamics processes. Double-peak structure is attributed to the fountain effect induced by strong PRE. Daytime peak enhances with solar activity since the plasma density increases with solar activity more strongly at the dip equator due to the equatorial vertical drift, and its seasonal dependence is mainly due to the seasonal variations of neutral density and the equatorial vertical drift. In the sunset sector, seasonal and solar activity dependences of the latitudinal distribution are related to the seasonal and solar activity variations of PRE. (3) The variation trend of the plasma density with solar activity shows local time, seasonal, and latitudinal differences. That is different from the changeless amplification trend at the DMSP altitude (840 km). Profound saturation effect is found in the dip equator region at equinox sunset. This saturation effect in the topside ionosphere is realated to the increase of PRE with solar activity. Solar activity variation trend of the topside plasma density was discussed quantitatively by Chapman-α function. The result shows that the effect induced by the change of the scale height is dominant at high altitudes; while the variation trend of ROCSAT-1 plasma density with solar activity is suggested to be related to the changes of the peak height, the scale height, and the peak electron density with solar activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When used in the determining the total electron content (TEC), which may be the most important ionospheric parameter, the worldwide GPS observation brings a revolutionary change in the ionospheric science. There are three steps in the data processing to retrieve GPS TEC: (1) to estimate slant TEC from the measurements of GPS signals; (2) to map the slant TEC into vertical; and (3) to interpolate the vertical TEC into grid points. In this scientific dissertation we focus our attention on the second step, the mapping theory and method to convert slant TEC into vertical. This is conventionally done by multiplying on the slant TEC a mapping function which is usually determined by certain models of electron density profile. Study of the vertical TEC mapping function is of significance in GPS TEC measurement. This paper first reviews briefly the three steps in GPS TEC mapping process. Then we compare the vertical TEC mapping function which were respectively calculated from the electron density profiles of the ionospheric model and retrieved from the observation of worldwide GPS TEC. We also perform the statistical analysis on the observational mapping functions. The main works and results are as follows: 1. We calculated the vertical TEC mapping functions for both SLM and Chapman models, and discussed the modulation of the ionosphere height to the mapping functions. We use two simple models, single layer model (SLM) and Chapman models, of the ionospheric electron density profiles to calculate the vertical TEC mapping function. In the case of the SLM, we discuss the control of the ionospheric altitude, i.e., the layer height hipp, to the mapping function. We find that the mapping function decreases rapidly as hipp increases. For the Chapman model we study also the control mapping function by both ionospheric altitude indicated by the peak electron density height hmF2, and the scale height, H, which present the thickness of the ionosphere. It is also found that the mapping function decreases rapidly as hmF2 increases. and it also decreases as H increases. 2. Then we estimate the mapping functions from the GPS observations and compare them with those calculated from the electron density models. We first, proposed a new method to estimate the mapping functions from GPS TEC data. This method is then used to retrieve the observational mapping function from both the slant TEC (TECS) provided by International GPS Service (IGS)and vertical TEC provide by JPL Global Ionospheric Maps (GIMs). Then we compare the observational mapping function with those calculated from the electron density models, SLM and Chapman. We find that the values of the observational mapping functions are much smaller than that from the model mapping functions, when the zenith angle is large enough. We attribute this to the effect of the plasmasphere which is above about 1000 km. 3. We statistically analyze the observational mapping functions and reveal their climatological changes. Observational mapping functions during 1999-2007 are used in our statistics. The main results are as follows. (1) The observational mapping functions decrease obviously with the decrement of the solar activity which is represented by the F10.7 index; (2) In annual variations of the observational mapping functions, the semiannual component is found at low-latitudes, and the remarkable seasonal variations at mid- and high-latitudes. (3) The diurnal variation of the observational mapping functions is that they are large in daytime and small at night, they become extremely small in the early morning before sunrise. (4) The observational mapping functions change with latitudes that they are smaller at lower latitudes and larger at higher. All of the above variations of the observational mapping functions are explained by the existence of the plasmasphere, which changes more slowly with time and more rapidly with latitude than the ionosphere does . In summary, our study on the vertical TEC mapping function imply that the ionosphere height has a modulative effect on the mapping function. We first propose the concept of the 'observational mapping functions' , and provide a new method to calculate them. This is important in improving the TEC mapping. It may also possible to retrieving the plasmaspheric information from GPS observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, more and more attention has been paid to stable isotope ratios in terrestrial depositional systems. Among them, δ~(13)C value is mainly determined by the surface vegetation, while vegetation is directly related to climate, therefore, carbon isotope ratio in soil organic matter and pedogenic carbonate has been employed as an important paleoecological indicator. In order to test the paleoecological information extracted from stable isotope ratios in terrestrial depositional systems, it is necessary to study the relationships between δ~(13)C value in standing terrestrial plants and today climate, as well as between δ~(13)C value in modern surface soil organic matter and standing vegetation. Thus, these relationships were studied in this paper by means of analysing δ~(13)C in standing plants and modem surface soil organic matter in North China. The main results and conclusions are presented as following: 1. According to their δ~(13)C values, 40 C-4 species represent about 16% of the 257 plant species sarnpled from the North China. C-4 photosynthesis mainly occurs in Poaceae, Cyperaceae and Chenopidaceae families, and percentage representation of C-4 photosynthesis is up to 56% in Poaceae family. 2. The δ~(13)C values of C-3 plant species in North China vary from -21.7‰ to -32.0‰ with an average of -27.1‰, and 93% focus on the range of -24.0‰ ~ -30.0‰; δ~(13)C values of C-4 plant species in North China are between -10.0‰ ~ -15.5‰ with an average of -12.9‰, and 90% concentrate on the range of -11.0‰ ~ -15.0‰. 3. The δ~(13)C composition of C-3 plant species collected from Beijing, a semi-moist district, mainly vary between -27.0‰ ~ -30.0‰, and the average is -28.7‰; the δ ~(13)C values of plants in the semi-arid district, east and west to the Liu Pan Moutain, focus on the range of-26.0‰ ~ -29.0‰ and -25.0‰ ~ -28.0‰, respectively, with the mean value of -27.6‰ and -26.6‰, respectively; the δ~(13)C composition in the arid district dominantly vary from -24.0‰ to -29.0‰, with the average of -26.2‰, and among them, the δ~(13)C values of C-3 plant species in deserts are often between - 22‰ ~ -24‰; the δ~(13)C values in the cold mountain district concentrate on the range of -24.0‰ to -29.0‰, with the average of -26.3‰. 4. The main range of δ~(13)C composition of C-4 plant species, derived from Beijing, a semi-moist district, are -13.0‰ ~ -15.5‰; the semi-arid district, -11.0‰ ~ -14.0‰; the arid district, -11.0‰ ~ -14.0‰. The mean values of them are -14.0‰, -12.4‰,-12.7‰, respectively. 5. From east to west in North China, δ~(13)C values of C-3 plant species increase with longitude. The correlation between δ~(13)C ratios of C-3 plant species and longitude is linear. Changing temperate and precipitation and changing atmosphere pressure are spossible explanations. 6. Almost all C-3 plant species have the trends that their δ~(13)C values gradually increase with decreasing precipitation, decreasing temperature and increasing altitude. Our results show the increases of the δ~(13)C value by 0.30 ~ 0.45‰, 0.19 ~ 0.27‰ and 1.1 ~ 1.2‰ per 100 mm, I℃ and 1000 m, respectively, for all C-3 plant species together. 7. The δ~(13)C values of all C-3 plant species together and a part of C-3 species show highly significant linear correlation with the mean annual temperature, the mean annual precipitation and the altitude, and the results suggest that they can be used as proxies of these environmental variables, while, those without highly significant correlation, may be not suitable as the proxies. 8. The extent, which of responses of δ~(13)C composition to environmental variables, is different for each C-3 plant specie. 9. The δ~(13)C variations along altitude and longitude may be non-linear for C-4 p1ant species in North China. The mean annual temperature may be not important influential factor, thus, it suggests that the δ~(13)C composition of C-4 plant species may be not suitable as the proxy of the mean annual temperature. The influences of summer temperature on δ~(13)C values are much bigger than that of annual temperature, among them, the influence of September temperature is biggest. The mean annual precipitation may be one of the dominant influential factors, and it shows a highly significant non-linear relationship with δ~(13)C values, and the result indicates that δ~(13) C composition of C-4 plant species can be employed as the proxy of the mean annual precipitation. 10. The variations of δ~(13)C ratios do not show systematic trends along longitude, latitude and altitude for modern surface soil organic in Northwest China. ll. The δ~(13)C ratios of modern surface soil organic do not exhibit systematic patterns with temperature and precipitation in Northwest China, it suggests that, unless soil organic is transferred from pure C-3 or C-4 vegetation, the δ~(13)C composition of soil organic may be not used as proxies of climatic variables. 12. The δ~(13)C values of modem surface soil organic are heavier than that of standing vegetation, and the difference ofrnean δ~(13)C between them is -2.18‰. 13. Without considering the δ~(13)C difference between vegetation and soil organic, as well as the δ~(13)C drift in various enviromnent, we may not obtain the valuable information of C-3, C-4 relative biomass in vegetation. 14. The C-4 biomass contribution in vegetation increase with decreasing latitude, increasing longitude and decreasing altitude in Northwest China. The C-4 biomass almost are zero in those regions north to 38 ° N, or west to 100°E, or above 2400 m. 15. The C-4 relative biomass in vegetation increase with growing temperature and precipitation. and, C-4 plants are rare at those regions where the mean annual temperature is less 4 ℃, or the mean annual precipitation is less 200 mm, and their biomass contribution in vegetation are almost zero. Both the mean annual temperature and the mean annual average precipitation may be the important influential factors of C-4 distribution, but the dominant factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we examined the surface features of quartz grains, the quartz oxygen isotopic ratios and the mineralogical compositions of the loess - paleosol - red clay sediments systematically. The surface features of quartz grains do not show significant changes of the dust deposits through the past seven million years. The particles were mainly created in the process of glacial and frost weathering of high mountains. Then the surfaces were altered in some degree by the flood and wind abrasion. The surface features registered all these processes. The assemblages of surface features changed for four times in the past seven million years, the occurrence ages are: 5.0~4.2MaBP, about 3.6MaBP, about 2.6MaBP and about 0.9MaBP, respectively. This may indicate that there were uplift events of the Tibetan Plateau during those times. The oxygen isotopic compositions of quartz in the sediments represent the oxygen isotopic compositions of the initial dusts because of the stable properties of quartz both physically and chemically. The oxygen isotopic compositions of 4~16um quartz changed significantly at about 2.6MaBP, decreasing from about 19.5%o to about 18.5%o. This decrease of quartz oxygen isotopic ratio suggests that the environments of the dust source areas changed at that time, or the range of dust source area changed at that time. The environmental change may result from the structural evolution of the Tibetan Plateau and global cooling at that time. The coarse fractions (>30μm) of the dust deposits were examined using the EDXA device for mineral identification. The quartz content has a decrease trend during 7~2MaBP, then increase rapidly at about 2MaBP. After 2MaBP, quartz content continues to decrease. The Ca-plagioclase content / quartz content ratio increase at about 3.6MaBP. The ratio shows a peak of 3-6 fold values at about 2.5~1.8MaBP, the cause of this is still unknown. The Ca-plagioclase content / quartz content ratio continues to increase after 1 MaBP. The flowing can be regarded as the conclusion remarks of this study: Some of the red clay sediment of the Chinese Loess Plateau (at least Lingtai and Jingchuan red clays) is eolian in origin. The quartz grains from dust deposits throughout the past seven million yeas showed the clues of glacial and frost processes. This indicates that the high mountains of western China reached a certain altitude to favor the glacial and/or frost processes at least seven millions years before. The weathering intensities of the past seven nnillion yeas have a decreasing trend. In about 5~4.5MaBP, the weathering is relatively weak, and the dust supply is relatively low. At about 3.6MaBP and 2.6MaBP, the dust supply increased significantly. The mineralogical composition, the quartz surface feature and the quartz oxygen isotope composition were influenced by the uplift of the Tibetan Plateau. The Plateau may have reached a certain altitude to generate the arid regions of inland China and favor the glacial and frost weathering. And it underwent a phased uplift, which have uplift events at about 3.6MaBP and 2.6MaBP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of the geological analysis and rock mass toppling deformation and failure mechanism analysis of Longtan engineering left bank slope, the synthetic space-time analysis and influence factors analysis on the surface monitoring data and deep rock mass monitoring data of B-zone of left bank slope are carried on. At the same time, based on the monitoring data analysis in conjunction with the predecessor's mechanics analysis results, the deformation state of B-zone of the left bank slope is discussed and its stability is synthetically evaluated. The detailed research contents and results are as following: According to the monitoring drill histogram analysis of Longtan engineering left bank slope, numerical simulation analysis and model experimentation analysis of bedded counter-inclined steep slope, a new type of toppling deformation and failure mode is proposed, that is "up-slope warping". Then the deformation and failure mode of bedded counter-inclined steep slope is summarized as "down-slope toppling" type, "up-slope warping" type and "complex fold" type. On the basis of synthetic space-time analysis to surface monitoring data and deep rock mass deformation monitoring data of B-zone of Longtan left bank slope;, we can get the conclusion that there exists potential instability rock mass over 520m altitude, especially over 560m altitude of slope B, and the rock mass of around strong-weathering line or creep rock mass breaking band controls the deformation of the whole slope. 1. According to the synthetic space-time analysis and influence factors analysis to the surface monitoring data of B-zone of Longtan left bank slope, a dynamical index, accumulative total acceleration index, which is used to analyze the influence factors of slope surface deformation, is raised. The principle and method of accumulative acceleration index are explained, and the index can be used for the influence factors analysis of the similar slope. 2. Summarize the results of geologic analysis, monitoring analysis and mechanics analysis, the following conclusion can be gotten: the stability of B-zone of the slope is basically good. However, on the condition of drainage and slope toe loading engineering, there is still some creep deformation in the rock mass over 520m altitude, especially over 560m altitude. So, better measures of the monitoring and timely maintenance of the drainage system are suggested in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbon isotope compositions of plants in Xilinguole, Haibei and Jilong and the tooth enamel of animals in Jilong have been analyzed. The study of carbon isotope discrimination of plants along altitude gradient among the three areas has found decreased discrimination.The eolian deposits of Heyeping can be used to reconstruct Holocene climate variability in the region. Some proxies indicates that the 8. 2 ka event can be found in north China, and it is warm and arid in the 4900~6800(or 6900) cal. a BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relationship between biology and environment is always the theme of ecology. Transect is becoming one of the important methods in studies on relationship between global change and terrestrial ecosystems, especially for analysis of its driving factors. Inner Mongolia Grassland is the most important in China Grassland Transect brought forward by Yu GR. In this study, changes in grassland community biomass along gradients of weather conditions in Inner Mongolia was researched by the method of transect. Methods of regression about biomass were also compared. The transect was set from Eerguna county to Alashan county (38° 07' 35" ~50° 12' 20" N, 101° 55' 25" -120° 20' 46" E) in Inner Mongolia, China. The sample sites were mainly chosen along the gradient of grassland type, meadow steppe-* typical steppe-*desert steppe-*steppification desert-^desert. The study was carried out when grassland community biomass got the peak in August or September, 2003 and 2004. And data of 49 sample sites was gotten, which included biomass, mean annual temperature, annual precipitation, accumulated temperature above zero, annual hours of sunshine and other statistical and descriptive data. The aboveground biomass was harvested, and the belowground biomass was obtained by coring (30 cm deep). Then all the biomass samples were dried within (80 + 5) °C in oven and weighted. The conclusion is as follows: 1) From the northeast to the southwest in Inner Mongolia, along the gradient of grassland type, meadow steppe-*typical steppe-*desert steppe-*steppification desert-* desert, the cover degree of vegetation community reduces. 2) By unitary regression analysis, biomass is negatively correlated with mean annual temperature, s^CTC accumulated temperature, ^10°C accumulated temperature and annual hours of sunshine, among which mean annual temperature is crucial, and positively with mean annual precipitation and mean annual relative humidity, and the correlation coefficient between biomass and mean annual relative humidity is higher. Altitude doesn't act on it evidently. Result of multiple regression analysis indicates that as the primary restrictive factor, precipitation affects biomass through complicated way on large scale, and its impaction is certainly important. Along the gradient of grassland type, total biomass reduces. The proportion of aboveground biomass to total biomass reduces and then increases after desert steppe. The trend of below ground biomass's proportion to total biomass is adverse to that of aboveground biomass. 3) Precipitation is not always the only driving factor along the transect for below-/aboveground biomass ratio of different vegetation type composed by different species, and distribution of temperature and precipitation is more important, which is much different among climatic regions, so that the trend of below-/aboveground biomass ratio along the grassland transect may change much through the circumscription of semiarid region and arid region. 4) Among reproductive allocation of aboveground biomass, only the proportion of stem in total biomass notably correlates to the given parameters. Stem/leaf biomass ratio decreases when longitude and latitude increase, caloric variables decrease, and variables about water increase from desert to meadow steppe. The change trends are good modeled by logarithm or binomial equations. 5) 0'-10 cm belowground biomass highly correlates to environmental parameters, whose proportion to total biomass changes most distinctly and increases along the gradient from the west to the east. The deeper belowground biomass responses to the environmental change on the adverse trend but not so sensitively as the surface layer. Because the change value of 0~10 cm belowground biomass is always more than that of below 10 cm along the gradient, the deference between them is balanced by aboveground biomass's change by the resource allocation equilibrium hypothesis.