972 resultados para Automatic Image Annotation
Resumo:
Eradication of code smells is often pointed out as a way to improve readability, extensibility and design in existing software. However, code smell detection remains time consuming and error-prone, partly due to the inherent subjectivity of the detection processes presently available. In view of mitigating the subjectivity problem, this dissertation presents a tool that automates a technique for the detection and assessment of code smells in Java source code, developed as an Eclipse plugin. The technique is based upon a Binary Logistic Regression model that uses complexity metrics as independent variables and is calibrated by expert‟s knowledge. An overview of the technique is provided, the tool is described and validated by an example case study.
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.
Resumo:
The extraction of relevant terms from texts is an extensively researched task in Text- Mining. Relevant terms have been applied in areas such as Information Retrieval or document clustering and classification. However, relevance has a rather fuzzy nature since the classification of some terms as relevant or not relevant is not consensual. For instance, while words such as "president" and "republic" are generally considered relevant by human evaluators, and words like "the" and "or" are not, terms such as "read" and "finish" gather no consensus about their semantic and informativeness. Concepts, on the other hand, have a less fuzzy nature. Therefore, instead of deciding on the relevance of a term during the extraction phase, as most extractors do, I propose to first extract, from texts, what I have called generic concepts (all concepts) and postpone the decision about relevance for downstream applications, accordingly to their needs. For instance, a keyword extractor may assume that the most relevant keywords are the most frequent concepts on the documents. Moreover, most statistical extractors are incapable of extracting single-word and multi-word expressions using the same methodology. These factors led to the development of the ConceptExtractor, a statistical and language-independent methodology which is explained in Part I of this thesis. In Part II, I will show that the automatic extraction of concepts has great applicability. For instance, for the extraction of keywords from documents, using the Tf-Idf metric only on concepts yields better results than using Tf-Idf without concepts, specially for multi-words. In addition, since concepts can be semantically related to other concepts, this allows us to build implicit document descriptors. These applications led to published work. Finally, I will present some work that, although not published yet, is briefly discussed in this document.
Resumo:
Since the invention of photography humans have been using images to capture, store and analyse the act that they are interested in. With the developments in this field, assisted by better computers, it is possible to use image processing technology as an accurate method of analysis and measurement. Image processing's principal qualities are flexibility, adaptability and the ability to easily and quickly process a large amount of information. Successful examples of applications can be seen in several areas of human life, such as biomedical, industry, surveillance, military and mapping. This is so true that there are several Nobel prizes related to imaging. The accurate measurement of deformations, displacements, strain fields and surface defects are challenging in many material tests in Civil Engineering because traditionally these measurements require complex and expensive equipment, plus time consuming calibration. Image processing can be an inexpensive and effective tool for load displacement measurements. Using an adequate image acquisition system and taking advantage of the computation power of modern computers it is possible to accurately measure very small displacements with high precision. On the market there are already several commercial software packages. However they are commercialized at high cost. In this work block-matching algorithms will be used in order to compare the results from image processing with the data obtained with physical transducers during laboratory load tests. In order to test the proposed solutions several load tests were carried out in partnership with researchers from the Civil Engineering Department at Universidade Nova de Lisboa (UNL).
Resumo:
RESUMO - O sistema de saúde é constantemente sujeito a pressões sendo as mais relevantes a pressão para o aumento da qualidade e a necessidade de contenção de custos. Os Eventos Adversos (EAs) ocorridos em meio hospitalar constituem um sério problema de qualidade na prestação de cuidados de saúde, com consequências clinicas, sociais, económicas e de imagem, que afectam pacientes, profissionais, organizações e o próprio sistema de saúde. Os custos associados à ocorrência de EAs em meio hospitalar, incrementam significativamente os custos hospitalares, representando cerca de um em cada sete dólares gastos no atendimento dos doentes. Só na última década surgiram estudos com o objectivo principal de avaliar esse impacto em meio hospitalar, subsistindo ainda uma grande indefinição quanto às variáveis e métodos a utilizar. O objectivo principal deste trabalho de projecto foi conhecer e caracterizar as diferentes metodologias utilizadas para avaliação dos custos económicos, nomeadamente dos custos directos, relacionados com a ocorrência de eventos adversos em meio hospitalar. Tendo em atenção as dificuldades referidas, utilizou-se como metodologia a revisão narrativa da literatura, complementada com a realização de uma técnica de grupo nominal. Os resultados obtidos foram os seguintes: i) a metodologia utilizada na maioria dos estudos para determinar a frequência, natureza e consequências dos EAs ocorridos em meio hospitalar, utiliza matrizes de base observacional, analítica, com base em estudos de coorte retrospectivo recorrendo aos critérios definidos pelo Harvard Medical Practice Study; ii) a generalidade dos estudos realizados avaliam os custos directos dos EAs em meio hospitalar, iii) verificou-se a existência de uma grande diversidade de métodos para a determinação dos custos associados aos EAs. A generalidade dos estudos determina esse valor com base na contabilização do número de dias adicionais de internamento, resultantes do EA, valorizados com base em custos médios; iv) o grupo de peritos, propôs como metodologia para a determinação do custo associado a cada EA, a utilização de sistemas de custeio por doente; v) propõe-se o desenvolvimento de uma plataforma informática, que permita o cruzamento da informação disponível no registo clinico electrónico do doente com um sistema automático de identificação de EAs, a desenvolver, e com sistemas de custeio por doente, de modo a valorizar os custos por doente e por tipo de EA. A avaliação dos custos directos associados à ocorrência de EAs em contexto hospitalar, pelo impacto económico e social que tem nos doentes e organizações, será seguramente uma das áreas de estudo e investigação futuras, no sentido de melhorar a eficiência do sistema de saúde e a qualidade e segurança dos cuidados prestados aos doentes.
Resumo:
The mobile IT era is here, it is still growing and expanding at a steady rate and, most of all, it is entertaining. Mobile devices are used for entertainment, whether social through the so-called social networks, or private through web browsing, video watching or gaming. Youngsters make heavy use of these devices, and even small children show impressive adaptability and skill. However not much attention is directed towards education, especially in the case of young children. Too much time is usually spent in games which only purpose is to keep children entertained, time that could be put to better use such as developing elementary geometric notions. Taking advantage of this pocket computer scenario, it is proposed an application geared towards small children in the 6 – 9 age group that allows them to consolidate knowledge regarding geometric shapes, forming a stepping stone that leads to some fundamental mathematical knowledge to be exercised later on. To achieve this goal, the application will detect simple geometric shapes like squares, circles and triangles using the device’s camera. The novelty of this application will be a core real-time detection system designed and developed from the ground up for mobile devices, taking into account their characteristic limitations such as reduced processing power, memory and battery. User feedback was be gathered, aggregated and studied to assess the educational factor of the application.
Resumo:
Nowadays, authentication studies for paintings require a multidisciplinary approach, based on the contribution of visual features analysis but also on characterizations of materials and techniques. Moreover, it is important that the assessment of the authorship of a painting is supported by technical studies of a selected number of original artworks that cover the entire career of an artist. This dissertation is concerned about the work of modernist painter Amadeo de Souza-Cardoso. It is divided in three parts. In the first part, we propose a tool based on image processing that combines information obtained by brushstroke and materials analysis. The resulting tool provides qualitative and quantitative evaluation of the authorship of the paintings; the quantitative element is particularly relevant, as it could be crucial in solving authorship controversies, such as judicial disputes. The brushstroke analysis was performed by combining two algorithms for feature detection, namely Gabor filter and Scale Invariant Feature Transform. Thanks to this combination (and to the use of the Bag-of-Features model), the proposed method shows an accuracy higher than 90% in distinguishing between images of Amadeo’s paintings and images of artworks by other contemporary artists. For the molecular analysis, we implemented a semi-automatic system that uses hyperspectral imaging and elemental analysis. The system provides as output an image that depicts the mapping of the pigments present, together with the areas made using materials not coherent with Amadeo’s palette, if any. This visual output is a simple and effective way of assessing the results of the system. The tool proposed based on the combination of brushstroke and molecular information was tested in twelve paintings obtaining promising results. The second part of the thesis presents a systematic study of four selected paintings made by Amadeo in 1917. Although untitled, three of these paintings are commonly known as BRUT, Entrada and Coty; they are considered as his most successful and genuine works. The materials and techniques of these artworks have never been studied before. The paintings were studied with a multi-analytical approach using micro-Energy Dispersive X-ray Fluorescence spectroscopy, micro-Infrared and Raman Spectroscopy, micro-Spectrofluorimetry and Scanning Electron Microscopy. The characterization of Amadeo’s materials and techniques used on his last paintings, as well as the investigation of some of the conservation problems that affect these paintings, is essential to enrich the knowledge on this artist. Moreover, the study of the materials in the four paintings reveals commonalities between the paintings BRUT and Entrada. This observation is supported also by the analysis of the elements present in a photograph of a collage (conserved at the Art Library of the Calouste Gulbenkian Foundation), the only remaining evidence of a supposed maquete of these paintings. The final part of the thesis describes the application of the image processing tools developed in the first part of the thesis on a set of case studies; this experience demonstrates the potential of the tool to support painting analysis and authentication studies. The brushstroke analysis was used as additional analysis on the evaluation process of four paintings attributed to Amadeo, and the system based on hyperspectral analysis was applied on the painting dated 1917. The case studies therefore serve as a bridge between the first two parts of the dissertation.
Resumo:
Currently the world swiftly adapts to visual communication. Online services like YouTube and Vine show that video is no longer the domain of broadcast television only. Video is used for different purposes like entertainment, information, education or communication. The rapid growth of today’s video archives with sparsely available editorial data creates a big problem of its retrieval. The humans see a video like a complex interplay of cognitive concepts. As a result there is a need to build a bridge between numeric values and semantic concepts. This establishes a connection that will facilitate videos’ retrieval by humans. The critical aspect of this bridge is video annotation. The process could be done manually or automatically. Manual annotation is very tedious, subjective and expensive. Therefore automatic annotation is being actively studied. In this thesis we focus on the multimedia content automatic annotation. Namely the use of analysis techniques for information retrieval allowing to automatically extract metadata from video in a videomail system. Furthermore the identification of text, people, actions, spaces, objects, including animals and plants. Hence it will be possible to align multimedia content with the text presented in the email message and the creation of applications for semantic video database indexing and retrieving.
Resumo:
Les yeux et les masques sont prévalents dans les oeuvres du peintre chinois contemporain Zeng Fanzhi (né en 1964), comme métaphore du jeu de pouvoir qui oppose les individus à l’appareil social et politique. Son oeuvre La Cène, d’après Leonard de Vinci, est un exemple frappant de cette préoccupation. Cet essai examine l’utilisation par l’artiste de cette représentation occidentale d’une crise morale (une trahison qui mène à la mort du Christ) pour exprimer la dystopie qui marque la Chine contemporaine. L’interprétation par Zeng de l’oeuvre de Vinci témoigne d’une compréhension profonde de sa signification à la Renaissance comme conflit entre le pouvoir terrestre et spirituel, auquel il surimpose la fonction du banquet dans la culture chinoise comme lieu de lutte politique. Un nihilisme détaché imprègne ce travail, à l’instar de l’interprétation métaphorique du banquet de Platon par Søren Kierkegaard, In Vino Veritas.
Resumo:
Ship tracking systems allow Maritime Organizations that are concerned with the Safety at Sea to obtain information on the current location and route of merchant vessels. Thanks to Space technology in recent years the geographical coverage of the ship tracking platforms has increased significantly, from radar based near-shore traffic monitoring towards a worldwide picture of the maritime traffic situation. The long-range tracking systems currently in operations allow the storage of ship position data over many years: a valuable source of knowledge about the shipping routes between different ocean regions. The outcome of this Master project is a software prototype for the estimation of the most operated shipping route between any two geographical locations. The analysis is based on the historical ship positions acquired with long-range tracking systems. The proposed approach makes use of a Genetic Algorithm applied on a training set of relevant ship positions extracted from the long-term storage tracking database of the European Maritime Safety Agency (EMSA). The analysis of some representative shipping routes is presented and the quality of the results and their operational applications are assessed by a Maritime Safety expert.
Resumo:
Due to advances in information technology (e.g., digital video cameras, ubiquitous sensors), the automatic detection of human behaviors from video is a very recent research topic. In this paper, we perform a systematic and recent literature review on this topic, from 2000 to 2014, covering a selection of 193 papers that were searched from six major scientific publishers. The selected papers were classified into three main subjects: detection techniques, datasets and applications. The detection techniques were divided into four categories (initialization, tracking, pose estimation and recognition). The list of datasets includes eight examples (e.g., Hollywood action). Finally, several application areas were identified, including human detection, abnormal activity detection, action recognition, player modeling and pedestrian detection. Our analysis provides a road map to guide future research for designing automatic visual human behavior detection systems.
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
ETL conceptual modeling is a very important activity in any data warehousing system project implementation. Owning a high-level system representation allowing for a clear identification of the main parts of a data warehousing system is clearly a great advantage, especially in early stages of design and development. However, the effort to model conceptually an ETL system rarely is properly rewarded. Translating ETL conceptual models directly into something that saves work and time on the concrete implementation of the system process it would be, in fact, a great help. In this paper we present and discuss a hybrid approach to this problem, combining the simplicity of interpretation and power of expression of BPMN on ETL systems conceptualization with the use of ETL patterns to produce automatically an ETL skeleton, a first prototype system, which has the ability to be executed in a commercial ETL tool like Kettle.
Resumo:
Yarrowia lipolytica, a yeast strain with a huge biotechnological potential, capable to produce metabolites such as γ-decalactone, citric acid, intracellular lipids and enzymes, possesses the ability to change its morphology in response to environmental conditions. In the present study, a quantitative image analysis (QIA) procedure was developed for the identification and quantification of Y. lipolytica W29 and MTLY40-2P strains dimorphic growth, cultivated in batch cultures on hydrophilic (glucose and N-acetylglucosamine (GlcNAc) and hydrophobic (olive oil and castor oil) media. The morphological characterization of yeast cells by QIA techniques revealed that hydrophobic carbon sources, namely castor oil, should be preferred for both strains growth in the yeast single cell morphotype. On the other hand, hydrophilic sugars, namely glucose and GlcNAc caused a dimorphic transition growth towards the hyphae morphotype. Experiments for γ-decalactone production with MTLY40-2P strain in two distinct morphotypes (yeast single cells and hyphae cells) were also performed. The obtained results showed the adequacy of the proposed morphology monitoring tool in relation to each morphotype on the aroma production ability. The present work allowed establishing that QIA techniques can be a valuable tool for the identification of the best culture conditions for industrial processes implementation.
Resumo:
Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondônia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearson's correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.