924 resultados para Alternative solar system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the proposal of a three phase current source shunt active power filter (CS-SAPF) with photovoltaic grid interface. The proposed system combines the compensation of reactive power and harmonics with the injection of energy from a solar photovoltaic array into the electrical power grid. The proposed equipment presents the advantage of giving good use to the current source inverter, even when the solar photovoltaic array is not producing energy. The paper describes the control system of the CS SAPF, the energy injection control strategy, and the current harmonics and power factor compensation strategy. Simulation results to assess the performance of the proposed system are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information is needed concerning the rock mass which can be difficult to obtain in some projects or project stages at least with accuracy. In 2007 an alternative classification scheme based on the RMR, the Hierarchical Rock Mass Rating (HRMR) was presented. The main feature of this system was the adaptation to the level of knowledge existent about the rock mass to obtain the classification of the rock mass since it followed a decision tree approach. However, the HRMR was only valid for hard rock granites with low fracturing degrees. In this work, the database was enlarged with approximately 40% more cases considering other types of granite rock masses including weathered granites and based on this increased database the system was updated. Granite formations existent in the north of Portugal including Porto city are predominantly granites. Some years ago a light rail infrastructure was built in the city of Porto and surrounding municipalities whi h involved considerable challenges due to the high heterogeneity levels of the granite formations and the difficulties involved in their geomechanical characterization. In this work it is intended to provide also a contribution to improve the characterization of these formations with special emphasis to the weathered horizons. A specific subsystem applicable to the weathered formations was developed. The results of the validation of these systems are presented and show acceptable performances in identifying the correct class using less information than with the RMR system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado Internacional em Sustentabilidade do Ambiente Construído

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Driven by concerns about rising energy costs, security of supply and climate change a new wave of Sustainable Energy Technologies (SET’s) have been embraced by the Irish consumer. Such systems as solar collectors, heat pumps and biomass boilers have become common due to government backed financial incentives and revisions of the building regulations. However, there is a deficit of knowledge and understanding of how these technologies operate and perform under Ireland’s maritime climate. This AQ-WBL project was designed to address both these needs by developing a Data Acquisition (DAQ) system to monitor the performance of such technologies and a web-based learning environment to disseminate performance characteristics and supplementary information about these systems. A DAQ system consisting of 108 sensors was developed as part of Galway-Mayo Institute of Technology’s (GMIT’s) Centre for the Integration of Sustainable EnergyTechnologies (CiSET) in an effort to benchmark the performance of solar thermal collectors and Ground Source Heat Pumps (GSHP’s) under Irish maritime climate, research new methods of integrating these systems within the built environment and raise awareness of SET’s. It has operated reliably for over 2 years and has acquired over 25 million data points. Raising awareness of these SET’s is carried out through the dissemination of the performance data through an online learning environment. A learning environment was created to provide different user groups with a basic understanding of a SET’s with the support of performance data, through a novel 5 step learning process and two examples were developed for the solar thermal collectors and the weather station which can be viewed at http://www.kdp 1 .aquaculture.ie/index.aspx. This online learning environment has been demonstrated to and well received by different groups of GMIT’s undergraduate students and plans have been made to develop it further to support education, awareness, research and regional development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stand alone solar powered refrigeration and water desalination, two of the most popular and sought after applications of solar energy systems, have been selected as the topic of research for the works presented in this thesis. The water desalination system based on evaporation and condensation was found to be the most suitable one to be powered by solar energy. It has been established that highoutput fast-response solar heat collectors used to achieve high rates of evaporation and reliable solar powered cooling system for faster rates of condensation are the most important factors in achieving increased outputs in solar powered desalination systems. Comprehensive reviews of Solar powered cooling/refrigeration and also water desalination techniques have been presented. In view of the fact that the Institute of Technology, Sligo has a well-established long history of research and development in the production of state of the art high-efficiency fast-response evacuated solar heat collectors it was decided to use this know how in the work described in this thesis. For this reason achieving high rates of evaporation was not a problem. It was, therefore, the question of the solar powered refrigeration that was envisaged to be used in the solar powered desalination tofacilitate rapid condensation of the evaporated water that had to be addressed first. The principles of various solar powered refrigeration techniques have also been reviewed. The first step in work on solar powered refrigeration was to successfully modify a conventional refrigerator working on Platen-Munters design to be powered by highoutput fast-response evacuated solar heat collectors. In this work, which was the first ever successful attempt in the field, temperatures as low as —19°C were achieved in the icebox. A new approach in the use of photovoltaic technology to power a conventional domestic refrigerator was also attempted. This was done by modifying a conventional domestic refrigerator to be powered by photovoltaic panels in the most efficient way. In the system developed and successfully tested in this approach, the power demand has been reduced phenomenally and it is possible to achieve 48 hours of cooling power with exposure to just 7 hours of sunshine. The successful development of the first ever multi-cycle intermittent solar powered icemaker is without doubt the most exciting breakthrough in the work described in this thesis. Output of 74.3kg of ice per module with total exposure area of 2.88 m2, or 25.73kg per m2, per day is a major improvement in comparison to about 5-6kg of ice per m2 per day reported for all the single cycle intermittent systems. This system has then become the basis for the development of a new solar powered refrigeration system with even higher output, named the “composite” system described in this thesis. Another major breakthrough associated with the works described in this thesis is the successful development and testing of the high-output water desalination system. This system that uses a combination of the high-output fast-response evacuated solar heat collectors and the multi-cycle icemaker. The system is capable of producing a maximum of 141 litres of distilled water per day per module which has an exposure area of 3.24m2, or a production rate of 43.5 litres per m2 per day. Once again when this result is compared to the reported daily output of 5 litres of desalinated water per m per day the significance of this piece of work becomes apparent. In the presentation of many of the components and systems described in this thesis CAD parametric solid modelling has been used instead of photographs to illustrate them more clearly. The multi-cycle icemaker and the high-output desalination systems are the subject of two patent applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abdominal Aortic Aneurysms (AAA) haemorhaging is a life-threatening disease. An aneurysm is a permanent swelling of an artery due to a weakness in its wall. Current surgical repair involves opening the chest or abdomen, gaining temporary vascular control of the aorta and suturing a prosthetic graft to the healthy aorta within the aneurysm itself The outcome of this surgical approach is not perfect, and the quality of life after this repair is impaired by postoperative pain, sexual dysfunction, and a lengthy hospital stay resulting in high health costs. All these negative effects are related to the large incision and extensive tissue dissection. Endovascular grafting is an alternative to the standard surgical method. This treatment is a less invasive method of treating aortic aneurysms. It involves a surgical exposure of the common femoral arteries where the stent graft can be inserted through by an over-the-wire technique. All manipulations are controlled from a remote place by the use of a catheter and this technique avoids the need to directly expose the diseased artery through a large incision or an extensive dissection. The proposed design method outlined in this project is to develop the endovascular approach. The main aim is to design an unitary bifurcated stent graft (1 e- bifurcated graft as a single component) to treat these Abdominal Aortic Aneurysms. This includes the delivery system and deployment mechanism necessary to first accurately position the stent graft across the aneurysm sac and also across the iliac bifurcation, and secondly fix the stent graft in position by using expandable metal stents. Thus, excluding the aneurysm from the circulation and therefore preventing rupture. Miniaturisation is a critical aspect of this design, as the smaller the crimped stent graft the easier to guide through the vascular system to the desired location. Biocompatibility is an important aspect. The preferred materials for this prosthesis are to use Shape Memory Alloys for the stent and a multifilament fabric for the graft. A taper design is applied for the geometry as this gives a favourable flow characteristic and reduced wave reflections. Adequate testing of the stent graft to prove its durability and the ease of the method of deployment is a prerequisite. A bench test facility has being designed and build to replicate the cardiovascular system and the disease in question aortic aneurysms at the iliac bifurcation. The testing here shows the feasibility of the proposed delivery system and the durability of the stent graft across the aneurysm sac. Finally, these endovascular treatments offer the economic advantage of short hospital stays or even treatment as an outpatient, as well as elimination of the need for postoperative intensive care The risk of developing an aneurysm increases with age, that is one of the mam reasons to look for less invasive ways of treating aneurysms. Consequently, there is enormous pressure to develop and use these devices rapidly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dezentrale Energieversorgung; Regenerative Energien; Kraft-Wärme-Kopplung; Windkraft; Photovoltaik; Solarthermie; Kraft-Wärme-Kälte-Kopplung; Bewertungskriterien dezentraler Energieversorgung

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy duty Diesel engine, alternative fuels, EGR, exhaust emissions, HC, NOx, FSN

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a la Plataforma Solar de Almería entre desembre del 2006 i gener del 2007. S’ha dut a terme la degradació en planta pilot dels colorants reactius Procion Red H-E7B i Cibacron Red FN-R mitjançant el procés de foto-Fenton aplicat com a tractament únic i com a pretractament d’un procés biològic. El procés de foto-Fenton, assistit amb llum solar, es va realitzar en un fotoreactor solar tipus Col•lector Parabòlic Compost (CPC) i el tractament biològic en un Reactor de Biomassa Immobilitzada (RBI). Com a punt de partida, i amb l’objectiu d’estudiar la reproductibilitat del sistema, es van prendre resultats obtinguts d’experiments realitzats prèviament a escala de laboratori i amb llum artificial. El paràmetre Carboni Orgànic Total (COT) es va emprar com a indicador de l’eliminació dels colorants i dels seus intermedis. En aplicar únicament el procés de foto-Fenton com a tractament, concentracions de 10 mg•l-1 de Fe (II) i 250 mg•l-1 de H2O2 per degradar 250 mg•l-1 Procion Red H-E7B, i de 20 mg•l-1 de Fe (II) i 500 mg•l-1 de H2O2 per degradar 250 mg•l-1 Cibacron Red FN-R, van reproduir els resultants obtinguts al laboratori, amb uns nivells d’eliminació de COT del 82 i 86%, respectivament. A més, l’ús beneficiós de la llum solar en el procés de foto-Fenton, juntament amb la configuració del CPC, van incrementar la velocitat de degradació respecte als resultats previs, permetent la reducció de la concentració de Fe (II) de 10 a 2 mg•l-1 (Procion Red H-E7B) i de 20 a 5 mg•l-1 (Cibacron Red FN-R) sense pèrdues d’efectivitat. D’altre banda, el sistema combinat foto-Fenton/tractament biològic en planta pilot, unes concentracions d’oxidant de 225 mg•l-1 H2O2 per Cibacron Red FN-R i 65 mg•l-1 H2O2 per Procion Red H-E7B van ser suficients per generar solucions intermèdies biodegradables i alimentar així el RBI, millorant inclús els resultats obtinguts prèviament al laboratori.