977 resultados para Alpha G(i1) Cystic Fibrosis
Resumo:
In the 1980s the development of the doubly labelled water (DLW) technique made it possible to determine the validity of dietary assessment methods using external, independent markers of intake in free-living populations. Since then, the accuracy of self-reported energy intake (EI) has been questioned on a number of occasions as under-reporting has been found to be prevalent in many different populations. This paper is a review of investigations using the DLW technique in conjunction with self-reported EI measures in groups including adults, children and adolescents, obese persons, athletes, military personnel and trekking explorers. In studies where a person other than the subject is responsible for recording dietary intake, such as parents of young children, EI generally corresponds to DLW determined energy expenditure. However, in instances where the subjects themselves report their intake, EI is generally under-reported when compared with energy expenditure. It was originally believed that this phenomenon of under-reporting was linked to increased adiposity and body size, however, it is now apparent that other factors, such as dietary restraint and socio-economic status, are also involved. This paper therefore aims to present a more comprehensive picture of under-reporting by tying in the findings of many DLW studies with other studies focusing particularly on the characteristics and mechanisms for under-reporting. Awareness of these characteristics and mechanisms will enable researchers to obtain more accurate self-reports of EI using all dietary recording techniques.
Adult mouse intrinsic laryngeal muscles express high levels of the myogenic regulatory factor, MYF-5
Resumo:
The intrinsic laryngeal muscles display unique structural and functional characteristics that distinguish them from the skeletal muscle of the trunk and limbs. These features include relatively small muscle fibers, super-fast contraction speed, and fatigue resistance. The molecular basis of tissue-specific functions and other characteristics is differential gene expression. Accordingly, we have investigated the molecular basis of the functional specialization of the intrinsic laryngeal muscles by examining the expression of two key genes in the larynx, known to be important for skeletal muscle development and function: (a) the muscle regulatory factor, Myf-5, and (b) the superfast-contracting myosin heavy chain (EO-MyHC). We have found that the adult thyroarytenoid muscles express much higher levels of both Myf-5 and EO-MyHC messenger ribonucleic acid (mRNA), compared to lower hindlimb skeletal muscle where Myf-5 mRNA levels are very low and EO-MyHC is not detectable. These findings suggest that the unique functional characteristics of the intrinsic laryngeal muscles may be based in laryngeal muscle-specific gene expression directed by a unique combination of muscle regulatory factors. Such laryngeal muscle-specific genes may allow the future development of new treatments for laryngeal muscle dysfunction.
Resumo:
It has been reported that mutations in the quorum-sensing genes lasI and rhlI in Pseudomonas aeruginosa result in, among many other things, loss of twitching motility (A. Glessner, R. S. Smith, B. H. Iglewski, and J. B. Robinson, J. Bacteriol. 181:1623-1629, 1999). We constructed knockouts of lasI and rhlI and the corresponding regulatory genes lasR and rhlR and found no effect on twitching motility. However, twitching-defective variants accumulated during culturing of lasI and rhlI mutants. Further analysis showed that the stable twitching-defective variants of lasI and rhlI mutants had arisen as a consequence of secondary mutations in vfr and algR, respectively, both of which encode key regulators affecting a variety of phenotypes, including twitching motility. In addition, when grown in shaking broth culture, lasI and rhlI mutants, but not the wild-type parent, also accumulated unstable variants that lacked both twitching motility and swimming motility and appeared to be identical in phenotype to the S1 and S2 variants that were recently reported to occur at high frequencies in P. aeruginosa strains grown as a biofilm or in static broth culture (E. Deziel, Y. Comeau, and R. Villemur, J. Bacteriol. 183:1195-1204, 2001). These results indicate that mutations in one regulatory system may create distortions that select during subsequent culturing for compensatory mutations in other regulatory genes within the cellular network. This problem may have compromised some past studies of regulatory hierarchies controlled by quorum sensing and of bacterial regulatory systems in general.
Resumo:
Introdução: O envolvimento respiratório é a principal causa de morbilidade e mortalidade na Fibrose Quística (FQ). Dados pediátricos sobre atividade física (AF), saturação periférica da oxi-hemoglobina (SpO2) e pico do fluxo da tosse (PFT) são escassos e não padronizados. Objetivos: Avaliar a função pulmonar (FP), AF, SpO2 e PFT, em crianças e adolescentes com FQ, no estado basal e em agudização (AR) e, na fase estável, avaliar a correlação entre as variáveis. Métodos: Realizou-se um estudo observacional prospetivo, com análise de espirometria, podometria, oximetria noturna e PFT, em condições basais. Na AR reavaliaram-se os mesmos parâmetros às 24-48 horas, 7, 15 e 30 dias, excetuando a AF aos 7 dias. Resultados: Avaliaram-se 8 doentes dos quais dois apresentaram um comprometimento ligeiro da FP e um moderado. A SpO2 foi de 96,2% [95,6; 96,6] e o número médio de passos/dia (NMP) foi de 6369 [4431; 10588]. Todos apresentaram valores do PFT inferiores ao percentil 5 para o género e idade (265 L/min [210; 290]). Apesar de não estatisticamente significativa, a correlação foi moderada entre FEV1 e SpO2 nocturna (rs =0,61; p=0,11); entre PFT e idade (rs=0,69; p=0,06); e entre PFT e capacidade vital forçada (CVF) (rs=0,54; p=0,17). Não se verificou correlação entre FEV1 e idade, NMP e PFT; e entre NMP e idade. No único caso de AR, à exceção da frequência respiratória, verificou-se a diminuição das variáveis às 24-48h; após 1 mês, a maioria das variáveis aproximou-se ou igualou os valores basais. Conclusão: Os resultados sugerem uma tendência para melhores valores de FEV1 corresponderem a melhores SpO2 noturnas e que, quanto maior a idade e a CVF, maior é o PFT. Não foi possível avaliar o impacto da AR por ter ocorrido apenas um caso.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.
Resumo:
This paper presents the application of multidimensional scaling (MDS) analysis to data emerging from noninvasive lung function tests, namely the input respiratory impedance. The aim is to obtain a geometrical mapping of the diseases in a 3D space representation, allowing analysis of (dis)similarities between subjects within the same pathology groups, as well as between the various groups. The adult patient groups investigated were healthy, diagnosed chronic obstructive pulmonary disease (COPD) and diagnosed kyphoscoliosis, respectively. The children patient groups were healthy, asthma and cystic fibrosis. The results suggest that MDS can be successfully employed for mapping purposes of restrictive (kyphoscoliosis) and obstructive (COPD) pathologies. Hence, MDS tools can be further examined to define clear limits between pools of patients for clinical classification, and used as a training aid for medical traineeship.
Resumo:
This contribution presents novel concepts for analysis of pressure–volume curves, which offer information about the time domain dynamics of the respiratory system. The aim is to verify whether a mapping of the respiratory diseases can be obtained, allowing analysis of (dis)similarities between the dynamical pattern in the breathing in children. The groups investigated here are children, diagnosed as healthy, asthmatic, and cystic fibrosis. The pressure–volume curves have been measured by means of the noninvasive forced oscillation technique during breathing at rest. The geometrical fractal dimension is extracted from the pressure–volume curves and a power-law behavior is observed in the data. The power-law model coefficients are identified from the three sets and the results show that significant differences are present between the groups. This conclusion supports the idea that the respiratory system changes with disease in terms of airway geometry, tissue parameters, leading in turn to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure-volume curves and the pseudophase-plane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
Descreve-se um caso de mucoviscidose com sintomatologia respiratória iniciada no período neonatal, associada a insuficiência pancreática invulgarmente precoce, o estudo da genética molecular revelou que, ao nível do gene CFTR, foi identificado na doente um composto genético das mutações FS08 e GS42X Realça-se a raridade desta forma de apresentação sendo no entanto lícito admitir-se esta entidade nosológica no diagnóstico diferencial da sindroma de dificuldade respiratória no recém-nascido. Discute-se a patogénese e alguns aspectos particulares da terapêutica instituida, os quais tem sido importantes para a melhoria da expectativa de vida de doentes com esta patologia.
Resumo:
Tese de mestrado em Biologia Humana e Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015
Resumo:
Increasingly the development of novel therapeutic strategies is taking into consideration the contribution of the intestinal microbiota to health and disease. Dysbiosis of the microbial communities colonizing the human intestinal tract has been described for a variety of chronic diseases, such as inflammatory bowel disease, obesity and asthma. In particular, reduction of several so-called probiotic species including Lactobacilli and Bifidobacteria that are generally considered to be beneficial, as well as an outgrowth of potentially pathogenic bacteria is often reported. Thus a tempting therapeutic approach is to shape the constituents of the microbiota in an attempt to restore the microbial balance towards the growth of 'health-promoting' bacterial species. A twist to this scenario is the recent discovery that the respiratory tract also harbors a microbiota under steady-state conditions. Investigators have shown that the microbial composition of the airway flora is different between healthy lungs and those with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease as well as cystic fibrosis. This is an emerging field, and thus far there is very limited data showing a direct contribution of the airway microbiota to the onset and progression of disease. However, should future studies provide such evidence, the airway microbiota might soon join the intestinal microbiota as a target for therapeutic intervention. In this review, we highlight the major advances that have been made describing the microbiota in chronic lung disease and discuss current and future approaches concerning manipulation of the microbiota for the treatment and prevention of disease.
Resumo:
The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.
Resumo:
During pregnancy several adaptations develop in response to the enhanced maternal and fetal metabolic needs. This review summarizes the major cardiorespiratory modifications of pregnancy as well as their consequences in chronic respiratory diseases such as restrictive ventilatory defects (post-tuberculosis pneumonectomy, kyphoscoliosis, neuromuscular disorders), asthma, cystic fibrosis, and pulmonary hypertension. It is important to recognize early the cardiorespiratory situations for which pregnancy is contraindicated or associated with a high risk of respiratory complications. Clinical management by an expert and often pluridisciplinary team is recommended.