962 resultados para Algebraic ANRs
Resumo:
System F is a type system that can be seen as both a proof system for second-order propositional logic and as a polymorphic programming language. In this work we explore several extensions of System F by types which express subtyping constraints. These systems include terms which represent proofs of subtyping relationships between types. Given a proof that one type is a subtype of another, one may use a coercion term constructor to coerce terms from the first type to the second. The ability to manipulate type constraints as first-class entities gives these systems a lot of expressive power, including the ability to encode generalized algebraic data types and intensional type analysis. The main contributions of this work are in the formulation of constraint types and a proof of strong normalization for an extension of System F with constraint types.
Resumo:
We consider a fault model of Boolean gates, both classical and quantum, where some of the inputs may not be connected to the actual gate hardware. This model is somewhat similar to the stuck-at model which is a very popular model in testing Boolean circuits. We consider the problem of detecting such faults; the detection algorithm can query the faulty gate and its complexity is the number of such queries. This problem is related to determining the sensitivity of Boolean functions. We show how quantum parallelism can be used to detect such faults. Specifically, we show that a quantum algorithm can detect such faults more efficiently than a classical algorithm for a Parity gate and an AND gate. We give explicit constructions of quantum detector algorithms and show lower bounds for classical algorithms. We show that the model for detecting such faults is similar to algebraic decision trees and extend some known results from quantum query complexity to prove some of our results.
Resumo:
We introduce a method for recovering the spatial and temporal alignment between two or more views of objects moving over a ground plane. Existing approaches either assume that the streams are globally synchronized, so that only solving the spatial alignment is needed, or that the temporal misalignment is small enough so that exhaustive search can be performed. In contrast, our approach can recover both the spatial and temporal alignment. We compute for each trajectory a number of interesting segments, and we use their description to form putative matches between trajectories. Each pair of corresponding interesting segments induces a temporal alignment, and defines an interval of common support across two views of an object that is used to recover the spatial alignment. Interesting segments and their descriptors are defined using algebraic projective invariants measured along the trajectories. Similarity between interesting segments is computed taking into account the statistics of such invariants. Candidate alignment parameters are verified checking the consistency, in terms of the symmetric transfer error, of all the putative pairs of corresponding interesting segments. Experiments are conducted with two different sets of data, one with two views of an outdoor scene featuring moving people and cars, and one with four views of a laboratory sequence featuring moving radio-controlled cars.
Resumo:
For two multinormal populations with equal covariance matrices the likelihood ratio discriminant function, an alternative allocation rule to the sample linear discriminant function when n1 ≠ n2 ,is studied analytically. With the assumption of a known covariance matrix its distribution is derived and the expectation of its actual and apparent error rates evaluated and compared with those of the sample linear discriminant function. This comparison indicates that the likelihood ratio allocation rule is robust to unequal sample sizes. The quadratic discriminant function is studied, its distribution reviewed and evaluation of its probabilities of misclassification discussed. For known covariance matrices the distribution of the sample quadratic discriminant function is derived. When the known covariance matrices are proportional exact expressions for the expectation of its actual and apparent error rates are obtained and evaluated. The effectiveness of the sample linear discriminant function for this case is also considered. Estimation of true log-odds for two multinormal populations with equal or unequal covariance matrices is studied. The estimative, Bayesian predictive and a kernel method are compared by evaluating their biases and mean square errors. Some algebraic expressions for these quantities are derived. With equal covariance matrices the predictive method is preferable. Where it derives this superiority is investigated by considering its performance for various levels of fixed true log-odds. It is also shown that the predictive method is sensitive to n1 ≠ n2. For unequal but proportional covariance matrices the unbiased estimative method is preferred. Product Normal kernel density estimates are used to give a kernel estimator of true log-odds. The effect of correlation in the variables with product kernels is considered. With equal covariance matrices the kernel and parametric estimators are compared by simulation. For moderately correlated variables and large dimension sizes the product kernel method is a good estimator of true log-odds.
Resumo:
Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications.
Resumo:
Lovelock terms are polynomial scalar densities in the Riemann curvature tensor that have the remarkable property that their Euler-Lagrange derivatives contain derivatives of the metric of an order not higher than 2 (while generic polynomial scalar densities lead to Euler-Lagrange derivatives with derivatives of the metric of order 4). A characteristic feature of Lovelock terms is that their first nonvanishing term in the expansion g λμ = η λμ + h λμ of the metric around flat space is a total derivative. In this paper, we investigate generalized Lovelock terms defined as polynomial scalar densities in the Riemann curvature tensor and its covariant derivatives (of arbitrarily high but finite order) such that their first nonvanishing term in the expansion of the metric around flat space is a total derivative. This is done by reformulating the problem as a BRST cohomological one and by using cohomological tools. We determine all the generalized Lovelock terms. We find, in fact, that the class of nontrivial generalized Lovelock terms contains only the usual ones. Allowing covariant derivatives of the Riemann tensor does not lead to a new structure. Our work provides a novel algebraic understanding of the Lovelock terms in the context of BRST cohomology. © 2005 IOP Publishing Ltd.
Resumo:
p.155-164
Resumo:
Pattern generalization is considered one of the prominent routes for in-troducing students to algebra. However, not all generalizations are al-gebraic. In the use of pattern generalization as a route to algebra, we —teachers and educators— thus have to remain vigilant in order not to confound algebraic generalizations with other forms of dealing with the general. But how to distinguish between algebraic and non-algebraic generalizations? On epistemological and semiotic grounds, in this arti-cle I suggest a characterization of algebraic generalizations. This char-acterization helps to bring about a typology of algebraic and arithmetic generalizations. The typology is illustrated with classroom examples.
Resumo:
This study sought to extend earlier work by Mulhern and Wylie (2004) to investigate a UK-wide sample of psychology undergraduates. A total of 890 participants from eight universities across the UK were tested on six broadly defined components of mathematical thinking relevant to the teaching of statistics in psychology - calculation, algebraic reasoning, graphical interpretation, proportionality and ratio, probability and sampling, and estimation. Results were consistent with Mulhern and Wylie's (2004) previously reported findings. Overall, participants across institutions exhibited marked deficiencies in many aspects of mathematical thinking. Results also revealed significant gender differences on calculation, proportionality and ratio, and estimation. Level of qualification in mathematics was found to predict overall performance. Analysis of the nature and content of errors revealed consistent patterns of misconceptions in core mathematical knowledge , likely to hamper the learning of statistics.
Resumo:
We define a category of quasi-coherent sheaves of topological spaces on projective toric varieties and prove a splitting result for its algebraic K-theory, generalising earlier results for projective spaces. The splitting is expressed in terms of the number of interior lattice points of dilations of a polytope associated to the variety. The proof uses combinatorial and geometrical results on polytopal complexes. The same methods also give an elementary explicit calculation of the cohomology groups of a projective toric variety over any commutative ring.
Resumo:
We introduce multidimensional Schur multipliers and characterise them, generalising well-known results by Grothendieck and Peller. We define a multidimensional version of the two-dimensional operator multipliers studied recently by Kissin and Shulman. The multidimensional operator multipliers are defined as elements of the minimal tensor product of several C *-algebras satisfying certain boundedness conditions. In the case of commutative C*-algebras, the multidimensional operator multipliersreduce to continuousmul-tidimensional Schur multipliers. We show that the multiplierswith respect to some given representations of the corresponding C*-algebrasdo not change if the representations are replaced by approximately equivalent ones. We establish a non-commutative and multidimensional version of the characterisations by Grothendieck and Peller which shows that universal operator multipliers can be obtained ascertain weak limits of elements of the algebraic tensor product of the corresponding C *-algebras.
Resumo:
We consider non-standard totalisation functors for double complexes, involving left or right truncated products. We show how properties of these imply that the algebraic mapping torus of a self map h of a cochain complex of finitely presented modules has trivial negative Novikov cohomology, and has trivial positive Novikov cohomology provided h is a quasi-isomorphism. As an application we obtain a new and transparent proof that a finitely dominated cochain complex over a Laurent polynomial ring has trivial (positive and negative) Novikov cohomology.
Resumo:
Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.
Resumo:
In this paper we present a generalization of belief functions over fuzzy events. In particular we focus on belief functions defined in the algebraic framework of finite MV-algebras of fuzzy sets. We introduce a fuzzy modal logic to formalize reasoning with belief functions on many-valued events. We prove, among other results, that several different notions of belief functions can be characterized in a quite uniform way, just by slightly modifying the complete axiomatization of one of the modal logics involved in the definition of our formalism. © 2012 Elsevier Inc. All rights reserved.