996 resultados para Age, 14C calibrated, CALIB 5 (Stuiver et al., 1998)


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment core GeoB 1023-5 from the eastern South Atlantic was investigated at high temporal resolution for variations of sea-surface temperature (SST) during the past 22 kyr, using the alkenone (UK'37) method. SSTs increased by 3.5°C from about 18°C during the Last Ice Age (21±2 cal kyr BP) to about 21.5°C at 14.5 cal kyr BP. This warming trend associated with the deglaciation phase was followed by a cooling event with lowest SSTs near 20°C, persisting for about 1000 years between 13 and 12 cal kyr BP. The SSTs then continued to increase to about 22.5°C at the Holocene climatic optimum at 7 cal kyr BP, and decreased again during the Late Holocene to a core-top value of 19.8°C that is comparable to modern annual mean SST values. When compared with alkenone SST records from the eastern North Atlantic, our SST record indicates continuous warming throughout the deglaciation phase in the Benguela Current, while its northern counterpart, the Canary Current, experienced prominent cooling during 'Heinrich Event 1' (H1). On the other hand, for the time period corresponding to the 'Younger Dryas' (YD) cooling event, the Benguela SST record exhibits a cold-temperature interval that corresponds to that observed in the eastern North Atlantic SST records. This observation suggests that interhemispheric climate response in Atlantic eastern boundary current systems was different with respect to the two abrupt climate events associated with Termination I. For the H1, the eastern South Atlantic SST record strongly supports the hypothesis that an 'anti-phase' thermal behavior in South Atlantic surface waters was forced by the slowdown of the North Atlantic Deep Water formation during cold spells in the North Atlantic. In contrast, the abrupt cooling in the eastern South Atlantic coincident with the YD period was probably induced by more vigorous global atmospheric circulation, enhancing the upwelling intensity in both eastern boundary current systems. This atmospheric control may have overridden any effect caused by changes in thermohaline circulation on the South Atlantic SSTs during the YD, which leads to the assumption that the thermohaline circulation was already much closer to its interglacial mode during the YD than during the H1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (d18Obf and d13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive d18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the d18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such d18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotope measurements in Greenland ice demonstrate that a series of rapid warm-cold oscillations -called Dansgaard-Oeschger events- punctuated the last glaciation (Dansgard et al., 1993, doi:10.1038/364218a0). Here we present records of sea surface temperature from North Atlantic sediments spanning the past 90 kyr which contain a series of rapid temperature oscillations closely matching those in the ice-core record, confirming predictions that the ocean must bear the imprint of the Dansgaard-Oeschger events (Broecker et al., 1988, doi:10.1016/0033-5894(88)90082-8; 1990, doi:10.1029/PA005i004p00469). Moreover, we show that between 20 and 80 kyr ago, the shifts in ocean-atmosphere temperature are bundled into cooling cycles, lasting on average 10 to 15 kyr, with asymmetrical saw-tooth shapes. Each cycle culminated in an enormous discharge of icebergs into the North Atlantic (a 'Hein-rich event' (Bond et al., 1992, doi:10.1038/360245a0; Broecker et al., 1992, doi:10.1007/BF00193540), followed by an abrupt shift to a warmer climate. These cycles document a previously unrecognized link between ice sheet behaviour and ocean-atmosphere temperature changes. An important question that remains to be resolved is whether the cycles are driven by external factors, such as orbital forcing, or by inter-nal ice-sheet dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the preservation and deposition history of organic molecules is crucial for the understanding of paleoenvironmental information contained in their abundance ratios such as Uk'37 and TEX86 used as proxies for sea surface temperature (SST). Based on their relatively high refractivity, alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) can survive postdepositional processes like lateral transport, potentially causing inferred SSTs to be misleading. Likewise, selective preservation of alkenones and GDGTs may cause biases of the SST proxies themselves and can lead to decoupling of both proxy records. Here we report compound-specific radiocarbon data of marine biomarkers including alkenones, GDGTs, and low molecular weight (LMW) n-fatty acids from Black Sea sediments deposited under different redox regimes to evaluate the potentially differential preservation of both biomarker classes and its effect on the SST indices Uk'37 and TEX86 . The decadal D14C values of alkenones, GDGTs, and LMW n-fatty acids indicate similar preservation under oxic, suboxic, and anoxic redox regimes and no contribution of pre-aged compounds, e.g., by lateral supply. Moreover, similar 14C concentrations of crenarchaeol, alkenones, and LMW n-fatty acids imply that the thaumarchaeotal GDGTs preserved in these sediments are produced in the euphotic zone rather than in subsurface/thermocline waters. However, we observe biomarker-based SSTs that strongly deviate (deltaSST up to 8.4 °C) from in situ measured mean annual SSTs in the Black Sea. This is not due to redox-dependent differential biomarker preservation as implied by their D14C values and spatial SST pattern. Since contributions from different sources can largely be excluded, the deviation of the Uk'37 and TEX86 proxy-derived SSTs from in situ SSTs requires further study of phylogenetic and other yet unknown environmental controls on alkenone and GDGT lipid distributions in the Black Sea.