767 resultados para wireless networking
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient Medium Access Control (MAC) and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.
Resumo:
Wireless Senor Networks(WSNs) detect events using one or more sensors, then collect data from detected events using these sensors. This data is aggregated and forwarded to a base station(sink) through wireless communication to provide the required operations. Different kinds of MAC and routing protocols need to be designed for WSN in order to guarantee data delivery from the source nodes to the sink. Some of the proposed MAC protocols for WSN with their techniques, advantages and disadvantages in the terms of their suitability for real time applications are discussed in this paper. We have concluded that most of these protocols can not be applied to real time applications without improvement
Resumo:
Health monitoring technologies such as Body Area Network (BAN) systems has gathered a lot of attention during the past few years. Largely encouraged by the rapid increase in the cost of healthcare services and driven by the latest technological advances in Micro-Electro-Mechanical Systems (MEMS) and wireless communications. BAN technology comprises of a network of body worn or implanted sensors that continuously capture and measure the vital parameters such as heart rate, blood pressure, glucose levels and movement. The collected data must be transferred to a local base station in order to be further processed. Thus, wireless connectivity plays a vital role in such systems. However, wireless connectivity comes at a cost of increased power usage, mainly due to the high energy consumption during data transmission. Unfortunately, battery-operated devices are unable to operate for ultra-long duration of time and are expected to be recharged or replaced once they run out of energy. This is not a simple task especially in the case of implanted devices such as pacemakers. Therefore, prolonging the network lifetime in BAN systems is one of the greatest challenges. In order to achieve this goal, BAN systems take advantage of low-power in-body and on-body/off-body wireless communication technologies. This paper compares some of the existing and emerging low-power communication protocols that can potentially be employed to support the rapid development and deployment of BAN systems.
Resumo:
The efficiency of a Wireless Power Transfer (WPT) system is greatly dependent on both the geometry and operating frequency of the transmitting and receiving structures. By using Coupled Mode Theory (CMT), the figure of merit is calculated for resonantly-coupled loop and dipole systems. An in-depth analysis of the figure of merit is performed with respect to the key geometric parameters of the loops and dipoles, along with the resonant frequency, in order to identify the key relationships leading to high-efficiency WPT. For systems consisting of two identical single-turn loops, it is shown that the choice of both the loop radius and resonant frequency are essential in achieving high-efficiency WPT. For the dipole geometries studied, it is shown that the choice of length is largely irrelevant and that as a result of their capacitive nature, low-MHz frequency dipoles are able to produce significantly higher figures of merit than those of the loops considered. The results of the figure of merit analysis are used to propose and subsequently compare two mid-range loop and dipole WPT systems of equal size and operating frequency, where it is shown that the dipole system is able to achieve higher efficiencies than the loop system of the distance range examined.
Resumo:
The use of online social networking tools (SNTs) has become commonplace within higher education. In this paper a definition and a typology of educational affordance of social networking service (SNS) are presented. The paper also explores the educational affordances whilst examining how university lecturers and students use SNTs to support their educational activities. The data presented here were obtained through a survey in which 38 participants from three universities took part; two universities in Uganda and one in the United Kingdom. The results show that Facebook is the most popular tool with 75 % of participants having profiles. Whilst most participants perceived the educational significance of these tools, social affordances remain more pronounced compared to pedagogical and technological affordances. The limitations of this study have also been discussed.
Resumo:
Although social networking sites (SNSs) present a great deal of opportunities to support learning, the privacy risk is perceived by learners as a friction point that affects their full use for learning. Privacy risks in SNSs can be divided into risks that are posed by the SNS provider itself and risks that result from user’s social interactions. Using an online survey questionnaire, this study explored the students’ perception of the benefits in using social networking sites for learning purposes and their perceived privacy risks. A sample of 214 students from Uganda Christian University in Africa was studied. The results show that although 88 % of participants indicated the usefulness of SNSs for learning, they are also aware of the risks associated with these sites. Most of the participants are concerned with privacy risks such as identity theft, cyber bullying, and impersonation that might influence their online learning participation in SNSs.
Resumo:
This paper presents a study on reduction of energy consumption in buildings through behaviour change informed by wireless monitoring systems for energy, environmental conditions and people positions. A key part to the Wi-Be system is the ability to accurately attribute energy usage behaviour to individuals, so they can be targeted with specific feedback tailored to their preferences. The use of wireless technologies for indoor positioning was investigated to ascertain the difficulties in deployment and potential benefits. The research to date has demonstrated the effectiveness of highly disaggregated personal-level data for developing insights into people’s energy behaviour and identifying significant energy saving opportunities (up to 77% in specific areas). Behavioural research addressed social issues such as privacy, which could affect the deployment of the system. Radio-frequency research into less intrusive technologies indicates that received-signal-strength-indicator-based systems should be able to detect the presence of a human body, though further work would be needed in both social and engineering areas.
Resumo:
Wireless Sensor Networks (WSNs) have been an exciting topic in recent years. The services offered by a WSN can be classified into three major categories: monitoring, alerting, and information on demand. WSNs have been used for a variety of applications related to the environment (agriculture, water and forest fire detection), the military, buildings, health (elderly people and home monitoring), disaster relief, and area or industrial monitoring. In most WSNs tasks like processing the sensed data, making decisions and generating emergency messages are carried out by a remote server, hence the need for efficient means of transferring data across the network. Because of the range of applications and types of WSN there is a need for different kinds of MAC and routing protocols in order to guarantee delivery of data from the source nodes to the server (or sink). In order to minimize energy consumption and increase performance in areas such as reliability of data delivery, extensive research has been conducted and documented in the literature on designing energy efficient protocols for each individual layer. The most common way to conserve energy in WSNs involves using the MAC layer to put the transceiver and the processor of the sensor node into a low power, sleep state when they are not being used. Hence the energy wasted due to collisions, overhearing and idle listening is reduced. As a result of this strategy for saving energy, the routing protocols need new solutions that take into account the sleep state of some nodes, and which also enable the lifetime of the entire network to be increased by distributing energy usage between nodes over time. This could mean that a combined MAC and routing protocol could significantly improve WSNs because the interaction between the MAC and network layers lets nodes be active at the same time in order to deal with data transmission. In the research presented in this thesis, a cross-layer protocol based on MAC and routing protocols was designed in order to improve the capability of WSNs for a range of different applications. Simulation results, based on a range of realistic scenarios, show that these new protocols improve WSNs by reducing their energy consumption as well as enabling them to support mobile nodes, where necessary. A number of conference and journal papers have been published to disseminate these results for a range of applications.
Resumo:
Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.
Resumo:
The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
Resumo:
Background: In recent studies a lot of attention is drawn to the connection between networking and entrepreneurship. Many scholars consider successful business and networking inseparable. Taking into consideration the topicality of the two notions discussed above the authors of this thesis decided to conduct the research dedicated to these phenomena in the field that interests them most – in the field of Swedish fashion. Purpose: The purpose of the thesis is to gain a deeper insight into entrepreneur’s experiences to point out the role of entrepreneurial networking in the process of internationalization of a micro-sized Swedish fashion company and to contribute to the research in this field by telling its unique story. Method: To achieve the purpose of the research a narrative ethnographic research was conducted. This research strategy was chosen because it suits the purpose best by giving an opportunity to get fresh insights into the field of entrepreneurial networking from the point of view of the entrepreneur. The data collected has a narrative nature therefore narrative analysis is used to present it. The methods of gathering the data are face-to-face interview and documents. Conclusion: we can define the most important role of entrepreneurial networking on the internationalization process of Odeur as an effective accelerator and a tool to fulfil the knowledge and expertise gaps in certain areas through other actors in the network.
Resumo:
Purpose – This research focuses on finding the reasons, why members from different sectors join a cross-sector/multi-stakeholder CSR network and what motivates them to share (or not to share) their knowledge of CSR and their best practices. Design/methodology/approach – Semi-structured interviews were conducted with members of the largest cross-sector CSR network in Sweden. The sample base of 15 people was chosen to be able to represent a wider variety of members from each participating sectors. As well as the CEO of the intermediary organization was interviewed. The interviews were conducted via email and telephone. Findings – The findings include several reasons linked to the business case of CSR such as stakeholder pressure, competitive advantage, legitimacy and reputation as well as new reasons like the importance of CSR, and the access of further knowledge in the field. Further reasons are in line with members wanting to join a network, such as access to contact or having personal contacts. As to why members are sharing their CSR knowledge, the findings indicate to inspire others, to show CSR commitment, to be visible, it leads to business opportunity and the access of others knowledge, and because it was requested. Reasons for not sharing their knowledge would be the lack of opportunity, lack of time and the lack of experience to do so. Originality/value – The research contributes to existing studies, which focused on Corporate Social Responsibility and cross-sector networking as well as to inter-organizational knowledge sharing in the field of CSR.
Resumo:
For those who have read even one of my musings, it will come as no surprise that I find Facebook, Twitter, social networking sites (SNS), and the rest of Webology less than inspiring. If you had read nothing other than the screed I blathered about Google a few columns back, you’d know that I find all this talk about the Web replacing libraries more than a little silly; I find it downright idiotic. Still, one must keep an open mind.
Resumo:
Este trabalho apresenta, inicialmente, uma análise comparativa detalhada dos dois padrões, IEEE 802.11a e IEEE802.11b, que foram apresentados recentemente pelo IEEE na área de redes sem fio (wireless). São apresentadas as principais diferenças tecnológicas dos dois padrões, no que se refere, principalmente, à arquitetura, funções de controle, segurança, desempenho e custo de implementação destas duas tecnologias de redes wireless. São avaliados também os aspectos de interoperabilidade, quando estas redes são integradas em redes corporativas fixas, que são baseadas, principalmente, em redes Ethernet, tradicionalmente usadas em redes corporativas. São considerados também, aspectos de custo e flexibilidade de aplicação das duas tecnologias e mostram-se como estas diferenças devem ser levadas em conta em aplicações típicas de um ambiente corporativo. Finalmente, apresenta-se também, como estudo de caso, uma análise focalizada principalmente na integração da tecnologia wireless em aplicações típicas de uma grande empresa local. Consideram-se as vantagens e desvantagens de ambas as tecnologias, como solução para algumas aplicações típicas encontradas nesta empresa, e justifica-se a escolha da solução que foi adotada. Conclui-se com algumas projeções quanto ao futuro da tecnologia wireless no ambiente público e corporativo.
Resumo:
In the last decade mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. It is expected that this tendency will continue to increase with the convergence of fixed Internet wired networks with mobile ones and with the evolution to the full IP architecture paradigm. Therefore mobile wireless communications will be of paramount importance on the development of the information society of the near future. In particular a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation. 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigm). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications to be available in the near future. The approach followed in the design and implementation of the mobile wireless networks of current generation (2G and 3G) has been the stratification of the architecture into a communication protocol model composed by a set of layers, in which each one encompasses some set of functionalities. In such protocol layered model, communications is only allowed between adjacent layers and through specific interface service points. This modular concept eases the implementation of new functionalities as the behaviour of each layer in the protocol stack is not affected by the others. However, the fact that lower layers in the protocol stack model do not utilize information available from upper layers, and vice versa, downgrades the performance achieved. This is particularly relevant if multiple antenna systems, in a MIMO (Multiple Input Multiple Output) configuration, are implemented. MIMO schemes introduce another degree of freedom for radio resource allocation: the space domain. Contrary to the time and frequency domains, radio resources mapped into the spatial domain cannot be assumed as completely orthogonal, due to the amount of interference resulting from users transmitting in the same frequency sub-channel and/or time slots but in different spatial beams. Therefore, the availability of information regarding the state of radio resources, from lower to upper layers, is of fundamental importance in the prosecution of the levels of QoS expected from those multimedia applications. In order to match applications requirements and the constraints of the mobile radio channel, in the last few years researches have proposed a new paradigm for the layered architecture for communications: the cross-layer design framework. In a general way, the cross-layer design paradigm refers to a protocol design in which the dependence between protocol layers is actively exploited, by breaking out the stringent rules which restrict the communication only between adjacent layers in the original reference model, and allowing direct interaction among different layers of the stack. An efficient management of the set of available radio resources demand for the implementation of efficient and low complexity packet schedulers which prioritize user’s transmissions according to inputs provided from lower as well as upper layers in the protocol stack, fully compliant with the cross-layer design paradigm. Specifically, efficiently designed packet schedulers for 4G networks should result in the maximization of the capacity available, through the consideration of the limitations imposed by the mobile radio channel and comply with the set of QoS requirements from the application layer. IEEE 802.16e standard, also named as Mobile WiMAX, seems to comply with the specifications of 4G mobile networks. The scalable architecture, low cost implementation and high data throughput, enable efficient data multiplexing and low data latency, which are attributes essential to enable broadband data services. Also, the connection oriented approach of Its medium access layer is fully compliant with the quality of service demands from such applications. Therefore, Mobile WiMAX seems to be a promising 4G mobile wireless networks candidate. In this thesis it is proposed the investigation, design and implementation of packet scheduling algorithms for the efficient management of the set of available radio resources, in time, frequency and spatial domains of the Mobile WiMAX networks. The proposed algorithms combine input metrics from physical layer and QoS requirements from upper layers, according to the crosslayer design paradigm. Proposed schedulers are evaluated by means of system level simulations, conducted in a system level simulation platform implementing the physical and medium access control layers of the IEEE802.16e standard.