986 resultados para third order resonance
Resumo:
Within this work, a particle-polymer surface system is studied with respect to the particle-surface interactions. The latter are governed by micromechanics and are an important aspect for a wide range of industrial applications. Here, a new methodology is developed for understanding the adhesion process and measure the relevant forces, based on the quartz crystal microbalance, QCM. rnThe potential of the QCM technique for studying particle-surface interactions and reflect the adhesion process is evaluated by carrying out experiments with a custom-made setup, consisting of the QCM with a 160 nm thick film of polystyrene (PS) spin-coated onto the quartz and of glass particles, of different diameters (5-20µm), deposited onto the polymer surface. Shifts in the QCM resonance frequency are monitored as a function of the oscillation amplitude. The induced frequency shifts of the 3rd overtone are found to decrease or increase, depending on the particle-surface coupling type and the applied oscillation (frequency and amplitude). For strong coupling the 3rd harmonic decreased, corresponding to an “added mass” on the quartz surface. However, positive frequency shifts are observed in some cases and are attributed to weak-coupling between particle and surface. Higher overtones, i.e. the 5th and 7th, were utilized in order to derive additional information about the interactions taking place. For small particles, the shift for specific overtones can increase after annealing, while for large particle diameters annealing causes a negative frequency shift. The lower overtones correspond to a generally strong-coupling regime with mainly negative frequency shifts observed, while the 7th appears to be sensitive to the contact break-down and the recorded shifts are positive.rnDuring oscillation, the motion of the particles and the induced frequency shift of the QCM are governed by a balance between inertial forces and contact forces. The adherence of the particles can be increased by annealing the PS film at 150°C, which led to the formation of a PS meniscus. For the interpretation, the Hertz, Johnson-Kendall-Roberts, Derjaguin-Müller-Toporov and the Mindlin theory of partial slip are considered. The Mindlin approach is utilized to describe partial slip. When partial slip takes place induced by an oscillating load, a part of the contact ruptures. This results in a decrease of the effective contact stiffness. Additionally, there are long-term memory effects due to the consolidation which along with the QCM vibrations induce a coupling increase. However, the latter can also break the contact, lead to detachment and even surface damage and deformation due to inertia. For strong coupling the particles appear to move with the vibrations and simply act as added effective mass leading to a decrease of the resonance frequency, in agreement with the Sauerbrey equation that is commonly used to calculate the added mass on a QCM). When the system enters the weak-coupling regime the particles are not able to follow the fast movement of the QCM surface. Hence, they effectively act as adding a “spring” with an additional coupling constant and increase the resonance frequency. The frequency shift, however, is not a unique function of the coupling constant. Furthermore, the critical oscillation amplitude is determined, above which particle detach. No movement is detected at much lower amplitudes, while for intermediate values, lateral particle displacement is observed. rnIn order to validate the QCM results and study the particle effects on the surface, atomic force microscopy, AFM, is additionally utilized, to image surfaces and measure surface forces. By studying the surface of the polymer film after excitation and particle removal, AFM imaging helped in detecting three different meniscus types for the contact area: the “full contact”, the “asymmetrical” and a third one including a “homocentric smaller meniscus”. The different meniscus forms result in varying bond intensity between particles and polymer film, which could explain the deviation between number of particles per surface area measured by imaging and the values provided by the QCM - frequency shift analysis. The asymmetric and the homocentric contact types are suggested to be responsible for the positive frequency shifts observed for all three measured overtones, i.e. for the weak-coupling regime, while the “full contact” type resulted in a negative frequency shift, by effectively contributing to the mass increase of the quartz..rnThe interplay between inertia and contact forces for the particle-surface system leads to strong- or weak-coupling, with the particle affecting in three mentioned ways the polymer surface. This is manifested in the frequency shifts of the QCM system harmonics which are used to differentiate between the two interaction types and reflect the overall state of adhesion for particles of different size.rn
Resumo:
Organische Ladungstransfersysteme weisen eine Vielfalt von konkurrierenden Wechselwirkungen zwischen Ladungs-, Spin- und Gitterfreiheitsgraden auf. Dies führt zu interessanten physikalischen Eigenschaften, wie metallische Leitfähigkeit, Supraleitung und Magnetismus. Diese Dissertation beschäftigt sich mit der elektronischen Struktur von organischen Ladungstransfersalzen aus drei Material-Familien. Dabei kamen unterschiedliche Photoemissions- und Röntgenspektroskopietechniken zum Einsatz. Die untersuchten Moleküle wurden z.T. im MPI für Polymerforschung synthetisiert. Sie stammen aus der Familie der Coronene (Donor Hexamethoxycoronen HMC und Akzeptor Coronen-hexaon COHON) und Pyrene (Donor Tetra- und Hexamethoxypyren TMP und HMP) im Komplex mit dem klassischen starken Akzeptor Tetracyanoquinodimethan (TCNQ). Als dritte Familie wurden Ladungstransfersalze der k-(BEDT-TTF)2X Familie (X ist ein monovalentes Anion) untersucht. Diese Materialien liegen nahe bei einem Bandbreite-kontrollierten Mottübergang im Phasendiagramm.rnFür Untersuchungen mittels Ultraviolett-Photoelektronenspektroskopie (UPS) wurden UHV-deponierte dünne Filme erzeugt. Dabei kam ein neuer Doppelverdampfer zum Einsatz, welcher speziell für Milligramm-Materialmengen entwickelt wurde. Diese Methode wies im Ladungstransferkomplex im Vergleich mit der reinen Donor- und Akzeptorspezies energetische Verschiebungen von Valenzzuständen im Bereich weniger 100meV nach. Ein wichtiger Aspekt der UPS-Messungen lag im direkten Vergleich mit ab-initio Rechnungen.rnDas Problem der unvermeidbaren Oberflächenverunreinigungen von lösungsgezüchteten 3D-Kristallen wurde durch die Methode Hard-X-ray Photoelectron Spectroscopy (HAXPES) bei Photonenenergien um 6 keV (am Elektronenspeicherring PETRA III in Hamburg) überwunden. Die große mittlere freie Weglänge der Photoelektronen im Bereich von 15 nm resultiert in echter Volumensensitivität. Die ersten HAXPES Experimente an Ladungstransferkomplexen weltweit zeigten große chemische Verschiebungen (mehrere eV). In der Verbindung HMPx-TCNQy ist die N1s-Linie ein Fingerabdruck der Cyanogruppe im TCNQ und zeigt eine Aufspaltung und einen Shift zu höheren Bindungsenergien von bis zu 6 eV mit zunehmendem HMP-Gehalt. Umgekehrt ist die O1s-Linie ein Fingerabdruck der Methoxygruppe in HMP und zeigt eine markante Aufspaltung und eine Verschiebung zu geringeren Bindungsenergien (bis zu etwa 2,5eV chemischer Verschiebung), d.h. eine Größenordnung größer als die im Valenzbereich.rnAls weitere synchrotronstrahlungsbasierte Technik wurde Near-Edge-X-ray-Absorption Fine Structure (NEXAFS) Spektroskopie am Speicherring ANKA Karlsruhe intensiv genutzt. Die mittlere freie Weglänge der niederenergetischen Sekundärelektronen (um 5 nm). Starke Intensitätsvariationen von bestimmten Vorkanten-Resonanzen (als Signatur der unbesetzte Zustandsdichte) zeigen unmittelbar die Änderung der Besetzungszahlen der beteiligten Orbitale in der unmittelbaren Umgebung des angeregten Atoms. Damit war es möglich, präzise die Beteiligung spezifischer Orbitale im Ladungstransfermechanismus nachzuweisen. Im genannten Komplex wird Ladung von den Methoxy-Orbitalen 2e(Pi*) und 6a1(σ*) zu den Cyano-Orbitalen b3g und au(Pi*) und – in geringerem Maße – zum b1g und b2u(σ*) der Cyanogruppe transferiert. Zusätzlich treten kleine energetische Shifts mit unterschiedlichem Vorzeichen für die Donor- und Akzeptor-Resonanzen auf, vergleichbar mit den in UPS beobachteten Shifts.rn
Resumo:
In hadronischen Kollisionen entstehen bei einem Großteil der Ereignisse mit einem hohen Impulsübertrag Paare aus hochenergetischen Jets. Deren Produktion und Eigenschaften können mit hoher Genauigkeit durch die Störungstheorie in der Quantenchromodynamik (QCD) vorhergesagt werden. Die Produktion von \textit{bottom}-Quarks in solchen Kollisionen kann als Maßstab genutzt werden, um die Vorhersagen der QCD zu testen, da diese Quarks die Dynamik des Produktionsprozesses bei Skalen wieder spiegelt, in der eine Störungsrechnung ohne Einschränkungen möglich ist. Auf Grund der hohen Masse von Teilchen, die ein \textit{bottom}-Quark enthalten, erhält der gemessene, hadronische Zustand den größten Teil der Information von dem Produktionsprozess der Quarks. Weil sie eine große Produktionsrate besitzen, spielen sie und ihre Zerfallsprodukte eine wichtige Rolle als Untergrund in vielen Analysen, insbesondere in Suchen nach neuer Physik. In ihrer herausragenden Stellung in der dritten Quark-Generation könnten sich vermehrt Zeichen im Vergleich zu den leichteren Quarks für neue Phänomene zeigen. Daher ist die Untersuchung des Verhältnisses zwischen der Produktion von Jets, die solche \textit{bottom}-Quarks enthalten, auch bekannt als $b$-Jets, und aller nachgewiesener Jets ein wichtiger Indikator für neue massive Objekte. In dieser Arbeit werden die Produktionsrate und die Korrelationen von Paaren aus $b$-Jets bestimmt und nach ersten Hinweisen eines neuen massiven Teilchens, das bisher nicht im Standard-Modell enthalten ist, in dem invarianten Massenspektrum der $b$-Jets gesucht. Am Large Hadron Collider (LHC) kollidieren zwei Protonenstrahlen bei einer Schwerpunktsenergie von $\sqrt s = 7$ TeV, und es werden viele solcher Paare aus $b$-Jets produziert. Diese Analyse benutzt die aufgezeichneten Kollisionen des ATLAS-Detektors. Die integrierte Luminosität der verwendbaren Daten beläuft sich auf 34~pb$^{-1}$. $b$-Jets werden mit Hilfe ihrer langen Lebensdauer und den rekonstruierten, geladenen Zerfallsprodukten identifiziert. Für diese Analyse müssen insbesondere die Unterschiede im Verhalten von Jets, die aus leichten Objekten wie Gluonen und leichten Quarks hervorgehen, zu diesen $b$-Jets beachtet werden. Die Energieskala dieser $b$-Jets wird untersucht und die zusätzlichen Unsicherheit in der Energiemessung der Jets bestimmt. Effekte bei der Jet-Rekonstruktion im Detektor, die einzigartig für $b$-Jets sind, werden studiert, um letztlich diese Messung unabhängig vom Detektor und auf Niveau der Hadronen auswerten zu können. Hiernach wird die Messung zu Vorhersagen auf nächst-zu-führender Ordnung verglichen. Dabei stellt sich heraus, dass die Vorhersagen in Übereinstimmung zu den aufgenommenen Daten sind. Daraus lässt sich schließen, dass der zugrunde liegende Produktionsmechanismus auch in diesem neu erschlossenen Energiebereich am LHC gültig ist. Jedoch werden auch erste Hinweise auf Mängel in der Beschreibung der Eigenschaften dieser Ereignisse gefunden. Weiterhin können keine Anhaltspunkte für eine neue Resonanz, die in Paare aus $b$-Jets zerfällt, in dem invarianten Massenspektrum bis etwa 1.7~TeV gefunden werden. Für das Auftreten einer solchen Resonanz mit einer Gauß-förmigen Massenverteilung werden modell-unabhängige Grenzen berechnet.
Parahydrogen induced polarization on a clinical MRI system : polarization transfer of two spin order
Resumo:
Hyperpolarization techniques enhance the nuclear spin polarization and thus allow for new nuclear magnetic resonance applications like in vivo metabolic imaging. One of these techniques is Parahydrogen Induced Polarization (PHIP). It leads to a hyperpolarized 1H spin state which can be transferred to a heteronucleus like 13C by a radiofrequency (RF) pulse sequence. In this work, timing of such a sequence was analyzed and optimized for the molecule hydroxyethyl propionate. The pulse sequence was adapted for the work on a clinical magnetic resonance imaging (MRI) system which is usually equipped only with a single RF transmit channel. Optimal control theory optimizations were performed to achieve an optimized polarization transfer. A drawback of hyperpolarization is its limited lifetime due to relaxation processes. The lifetime can be increased by storing the hyperpolarization in a spin singlet state. The second part of this work therefore addresses the spin singlet state of the Cs-symmetric molecule dimethyl maleate which needs to be converted to the spin triplet state to be detectable. This conversion was realized on a clinical MRI system, both by field cycling and by two RF pulse sequences which were adapted and optimized for this purpose. Using multiple conversions enables the determination of the lifetime of the singlet state as well as the conversion efficiency of the RF pulse sequence. Both, the hyperpolarized 13C spin state and the converted singlet state were utilized for MR imaging. Careful choice of the echo time was shown to be crucial for both molecules.
Resumo:
Subthreshold resonance is a characteristic membrane property of different neuronal classes, is critically involved in the generation of network oscillations, and tunes the integration of synaptic inputs to particular frequency ranges. In order to investigate whether resonance properties of distinct neuronal populations in the immature neocortex contribute to these network oscillations, I performed whole-cell patch-clamp recordings from visually identified neurons in tangential and coronal neocortical slices from postnatal day (P) P0-P7 C57Bl/6 and P6-P13 GAD67-GFP knock-in mice. Subthreshold resonance was analyzed by sinusoidal current injection of varying frequency. All Cajal-Retzius cells showed subthreshold resonance with an average frequency of 2.6 ± 0.1 Hz (n=60), which was massively reduced by ZD7288, a blocker of hyperpolarization-activated cation currents. About 65.6% (n=61) of the supragranular pyramidal neurons showed subthreshold resonance with an average frequency of 1.4 ± 0.1 Hz (n=40). Application of 1 mM Ni2+ suppressed subthreshold resonance, suggesting that low-threshold Ca2+ currents contribute to resonance in these neurons. About 63.6% (n=77) of the layer V pyramidal neurons showed subthreshold resonance with an average frequency of 1.4 ± 0.2 Hz (n=49), which was abolished by ZD7288. Only 44.1% (n=59) of the subplate neurons showed subthreshold resonance with an average frequency of 1.3 ± 0.2 Hz (n=26) and a small resonance strength. Finally, 50% of the investigated GABAergic interneurons showed subthreshold resonance with an average frequency of 2.0 ± 0.2 Hz (n=42). Membrane hyperpolarization to –86 mV attenuated the frequency and strength of subthreshold resonance. Subthreshold resonance was virtually abolished in the presence of 1 mM Ni2+, suggesting that t-type Ca2+ currents are critically involved in the generation of resonance, while ZD7288 had no effect. Application of 0.4 µM TTX suppressed subthreshold resonance at depolarized, but not hyperpolarized membrane potential, suggesting that persistent Na+ current contribute to the amplification of membrane resonance. rnIn summary, these results demonstrate that all investigated neuronal subpopulations reveal resonance behavior, with either hyperpolarization-activated cation or low-threshold Ca2+ currents contributing to the subthreshold resonance. GABAergic interneurons also express subthreshold resonance at low frequencies, with t-type Ca2+ and persistent Na+ currents underlying the generation of membrane resonance. The membrane resonance of immature neurons may contribute to the generation of slow oscillatory activity pattern in the immature neocortex and enhance the temporal precision of synaptic integration in developing cortical neurons.rn
Resumo:
Automatic scan planning for magnetic resonance imaging of the knee aims at defining an oriented bounding box around the knee joint from sparse scout images in order to choose the optimal field of view for the diagnostic images and limit acquisition time. We propose a fast and fully automatic method to perform this task based on the standard clinical scout imaging protocol. The method is based on sequential Chamfer matching of 2D scout feature images with a three-dimensional mean model of femur and tibia. Subsequently, the joint plane separating femur and tibia, which contains both menisci, can be automatically detected using an information-augmented active shape model on the diagnostic images. This can assist the clinicians in quickly defining slices with standardized and reproducible orientation, thus increasing diagnostic accuracy and also comparability of serial examinations. The method has been evaluated on 42 knee MR images. It has the potential to be incorporated into existing systems because it does not change the current acquisition protocol.
Resumo:
To determine the optimal stochastic whole body vibration (SR-WBV) load modality regarding pelvic floor muscle (PFM) activity in order to complete the SR-WBV training methodology for future PFM training with SR-WBV.
Resumo:
The Third Section was an instrument not so much of oppression as of information, propaganda and education. Under Nicholas I, the press did not represent public opinion, but rather the official point of view. It was intended to shape public opinion rather than to express it and much of the Third Section's activity focused on creating the best possible contacts with journalists and men of letters. The Third Section supervised literary activities by examining works in print and collecting information through its agents. It rewarded those authors whose work was approved by the emperor, it used writers to pursue its goals, especially in order to "direct minds", but acted as a mediator between the tsar, censors and writers, or sometimes as arbiter in conflicts between writers themselves, and it also acted as a censor. Writers, for their part, served in the Third Section, becoming its agents or consultants, delivering reports to it and writing texts commissioned by the Section. The majority of writers did not see any problems with serving or assisting the Third Section. Ideologies offering an alternative to state monarchism /in professional literature or individual liberalism/ were very weak. The only exception was a small group, mostly composed of eminent and highly educated aristocrats who possessed alternative moral and financial resources. Reitblat showed that the strong ties maintained by some journalists and writers with the Third Section were not unfortunate exceptions due to the low moral qualities of those individuals, but rather a natural phenomenon which reflected the specific nature of the Russian literary system and, more generally, of Russian society as a whole.
Resumo:
In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.
Resumo:
Traumatic lesions of the subcutaneous fatty tissue provide important clues for forensic reconstruction. The interpretation of these patterns requires a precise description and recording of the position and extent of each lesion. During conventional autopsy, this evaluation is performed by dissecting the skin and subcutaneous tissues in successive layers. In this way, depending on the force and type of impact (right angle or tangent), several morphologically distinct stages of fatty tissue damage can be differentiated: perilobular hemorrhage (I), contusion (II), or disintegration (III) of the fat lobuli, and disintegration with development of a subcutaneous cavity (IV). In examples of virtopsy cases showing blunt trauma to the skin and fatty tissue, we analyzed whether these lesions can also be recorded and classified using multislice computed tomography (MSCT) and magnetic resonance imaging (MRI). MSCT has proven to be a valuable screening method to detect the lesions, but MRI is necessary in order to properly differentiate and classify the grade of damage. These noninvasive radiological diagnostic tools can be further developed to play an important role in forensic examinations, in particular when it comes to evaluating living trauma victims.
Resumo:
The aim of this study was to describe magnetic resonance imaging (MRI) findings associated with presumed elevated intracranial pressure (ICP) in dogs and to evaluate whether MRI could be used to discriminate between dogs with and without elevated ICP. Of 91 dogs that underwent cranial MRI examination, 18 (19.8%) were diagnosed with elevated ICP based on neurological examination, fundoscopy and transcranial Doppler ultrasonography. The MRI findings that showed the strongest association with elevated ICP were mass effect (odds ratio [OR], 78.5), caudal transtentorial herniation (OR, 72.0), subfalcine herniation (OR, 45.6), perilesional oedema (OR, 34.0), displacement of the lamina quadrigemina (OR, 27.7) and effacement of the cerebral sulci (OR, 27.1). The presence of any two or more of the following MRI findings identified elevated ICP with a sensitivity of 72% and a specificity of 96%: compression of the suprapineal recess, compression of the third ventricle, compression of the fourth ventricle, effacement of the cerebral sulci and caudal transposition of the lamina quadrigemina. In conclusion, there is an association between MRI findings and elevated ICP in dogs; therefore, MRI might be useful to discriminate between dogs with and without elevated ICP.
Resumo:
A search is presented for the production of new heavy quarks that decay to a Z boson and a third-generation Standard Model quark. In the case of a new charge +2/3 quark (T), the decay targeted is T → Zt, while the decay targeted for a new charge −1/3 quark (B) is B → Zb. The search is performed with a dataset corresponding to 20.3 fb−1 of pp collisions at √ s = 8TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Selected events contain a high transverse momentum Z boson candidate reconstructed from a pair of oppositely charged same-flavor leptons (electrons or muons), and are analyzed in two channels defined by the absence or presence of a third lepton. Hadronic jets, in particular those with properties consistent with the decay of a b-hadron, are also required to be present in selected events. Different requirements are made on the jet activity in the event in order to enhance the sensitivity to either heavy quark pair production mediated by the strong interaction, or single production mediated by the electroweak interaction. No significant excess of events above the Standard Model expectation is observed, and lower limits are derived on the mass of vector-like T and B quarks under various branching ratio hypotheses, as well as upper limits on the agnitude of electroweak coupling parameters.
Resumo:
PURPOSE The aim of this study was to evaluate the utility of cardiac postmortem magnetic resonance (PMMR) to perform routine measurements of the ventricular wall thicknesses and the heart valves and to assess if imaging measurements are consistent with traditional autopsy measurements. METHODS In this retrospective study, 25 cases with cardiac PMMR and subsequent autopsy were included. The thicknesses of the myocardial walls as well as the circumferences of all heart valves were measured on cardiac PMMR and compared to autopsy measurements. Paired samples T-test and the Wilcoxon-Signed rank test, were used to compare autopsy and cardiac PMMR measurements. For exploring correlations, the Pearson's Correlation coefficient and the Spearman's Rho test were used. RESULTS Cardiac PMMR measurements of the aortic and pulmonary valve circumferences showed no significant differences from autopsy measurements. The mitral and tricuspid valves circumferences differed significantly from autopsy measurements. Left myocardial and right myocardial wall thickness also differed significantly from autopsy measurements. Left and right myocardial wall thickness, and tricuspid valve circumference measurements on cardiac PMMR and autopsy, correlated strongly and significantly. CONCLUSION Several PMMR measurements of cardiac parameters differ significantly from corresponding autopsy measurements. However, there is a strong correlation between cardiac PMMR measurements and autopsy measurements in the majority of these parameters. It is important to note that myocardial walls are thicker when measured in situ on cardiac PMMR than when measured at autopsy. Investigators using post-mortem MR should be aware of these differences in order to avoid false diagnoses of cardiac pathology based on cardiac PMMR.
Resumo:
An interleaved, dual resonance, volume localization technique for $\sp1$H/$\sp{31}$P magnetic resonance spectroscopy has been designed, implemented on a 2 T imager/spectrometer, and verified with phantom studies.^ Localization techniques, including several single voxel techniques and spectroscopic imaging, were implemented, and studies were performed to compare the efficiency of each sequence of $\sp1$H/$\sp{31}$P spectral acquisitions. The sequence chosen was a hybrid of the stimulated echo single voxel technique and the spectroscopic imaging technique.^ Water suppression during the $\sp1$H spectral acquisitions was accomplished by the use of three narrow bandwidth RF saturation pulses in combination with three spoiler gradients. The spoiler gradient amplitudes were selected on the basis of a numerical solution of the Bloch equations. A post-acquisition water suppression algorithm was used to minimize any residual water signal.^ For interleaved $\sp1$H/$\sp{31}$P acquisitions, a dual resonance RF coil was constructed and interfaced to the existing RF detection system via a custom-designed dual resonance transcoupler and switching system. Programmable attenuators were incorporated to allow for changes in receiver and transmitter attenuation "on the fly".^ To provide the rapidly switched gradient fields required for the $\sp1$H/$\sp{31}$P acquisitions, an actively screened gradient coil system was designed and implemented. With this system, gradient field rise times on the order of 100 $\mu$s were obtained. These rapid switching times were necessary for minimizing intrasequence delays and for improving localization quality and water suppression efficiency.^ The interleaved $\sp1$H/$\sp{31}$P volume localization technique was tested using a two-compartment phantom. Analysis of the data showed that the spectral contamination was less than three percent. One-to-one spatial correspondence of the $\sp1$H and $\sp{31}$P spectra was verified and allowed for direct correlation of the spectral data with a standard magnetic resonance image. ^
Resumo:
The present contribution discusses the development of a PSE-3D instability analysis algorithm, in which a matrix forming and storing approach is followed. Alternatively to the typically used in stability calculations spectral methods, new stable high-order finitedifference-based numerical schemes for spatial discretization 1 are employed. Attention is paid to the issue of efficiency, which is critical for the success of the overall algorithm. To this end, use is made of a parallelizable sparse matrix linear algebra package which takes advantage of the sparsity offered by the finite-difference scheme and, as expected, is shown to perform substantially more efficiently than when spectral collocation methods are used. The building blocks of the algorithm have been implemented and extensively validated, focusing on classic PSE analysis of instability on the flow-plate boundary layer, temporal and spatial BiGlobal EVP solutions (the latter necessary for the initialization of the PSE-3D), as well as standard PSE in a cylindrical coordinates using the nonparallel Batchelor vortex basic flow model, such that comparisons between PSE and PSE-3D be possible; excellent agreement is shown in all aforementioned comparisons. Finally, the linear PSE-3D instability analysis is applied to a fully three-dimensional flow composed of a counter-rotating pair of nonparallel Batchelor vortices.