952 resultados para standard gas generation
Resumo:
The conventional mechanism of fermion mass generation in the Standard Model involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate mechanism for the generation of fermion masses that does not require SSB, in the context of lattice field theories. Being inherently strongly coupled, this mechanism requires a non-perturbative approach like the lattice approach.
In order to explore this mechanism, we study a simple lattice model with a four-fermion interaction that has massless fermions at weak couplings and massive fermions at strong couplings, but without any spontaneous symmetry breaking. Prior work on this type of mass generation mechanism in 4D, was done long ago using either mean-field theory or Monte-Carlo calculations on small lattices. In this thesis, we have developed a new computational approach that enables us to perform large scale quantum Monte-Carlo calculations to study the phase structure of this theory. In 4D, our results confirm prior results, but differ in some quantitative details of the phase diagram. In contrast, in 3D, we discover a new second order critical point using calculations on lattices up to size $ 60^3$. Such large scale calculations are unprecedented. The presence of the critical point implies the existence of an alternate mechanism of fermion mass generation without any SSB, that could be of interest in continuum quantum field theory.
Resumo:
This thesis details the top-down fabrication of nanostructures on Si and Ge substrates by electron beam lithography (EBL). Various polymeric resist materials were used to create nanopatterns by EBL and Chapter 1 discusses the development characteristics of these resists. Chapter 3 describes the processing parameters, resolution and topographical and structural changes of a new EBL resist known as ‘SML’. A comparison between SML and the standard resists PMMA and ZEP520A was undertaken to determine the suitability of SML as an EBL resist. It was established that SML is capable of high-resolution patterning and showed good pattern transfer capabilities. Germanium is a desirable material for use in microelectronic applications due to a number of superior qualities over silicon. EBL patterning of Ge with high-resolution hydrogen silsesquioxane (HSQ) resist is however difficult due to the presence of native surface oxides. Thus, to combat this problem a new technique for passivating Ge surfaces prior to EBL processes is detailed in Chapter 4. The surface passivation was carried out using simple acids like citric acid and acetic acid. The acids were gentle on the surface and enabled the formation of high-resolution arrays of Ge nanowires using HSQ resist. Chapter 5 details the directed self-assembly (DSA) of block copolymers (BCPs) on EBL patterned Si and, for the very first time, Ge surfaces. DSA of BCPs on template substrates is a promising technology for high volume and cost effective nanofabrication. The BCP employed for this study was poly (styrene-b-ethylene oxide) and the substrates were pre-defined by HSQ templates produced by EBL. The DSA technique resulted into pattern rectification (ordering in BCP) and in pattern multiplication within smaller areas.
Resumo:
High throughput next generation sequencing, together with advanced molecular methods, has considerably enhanced the field of food microbiology. By overcoming biases associated with culture dependant approaches, it has become possible to achieve novel insights into the nature of food-borne microbial communities. In this thesis, several different sequencing-based approaches were applied with a view to better understanding microbe associated quality defects in cheese. Initially, a literature review provides an overview of microbe-associated cheese quality defects as well as molecular methods for profiling complex microbial communities. Following this, 16S rRNA sequencing revealed temporal and spatial differences in microbial composition due to the time during the production day that specific commercial cheeses were manufactured. A novel Ion PGM sequencing approach, focusing on decarboxylase genes rather than 16S rRNA genes, was then successfully employed to profile the biogenic amine producing cohort of a series of artisanal cheeses. Investigations into the phenomenon of cheese pinking formed the basis of a joint 16S rRNA and whole genome shotgun sequencing approach, leading to the identification of Thermus species and, more specifically, the pathway involved in production of lycopene, a red coloured carotenoid. Finally, using a more traditional approach, the effect of addition of a facultatively heterofermentative Lactobacillus (Lactobacillus casei) to a Swiss-type cheese, in which starter activity was compromised, was investigated from the perspective of its ability to promote gas defects and irregular eye formation. X-ray computed tomography was used to visualise, using a non-destructive method, the consequences of the undesirable gas formation that resulted. Ultimately this thesis has demonstrated that the application of molecular techniques, such as next generation sequencing, can provide a detailed insight into defect-causing microbial populations present and thereby may underpin approaches to optimise the quality and consistency of a wide variety of cheeses.
Resumo:
The data files give the basic field and laboratory data on five ponds in the northeast Siberian Arctic tundra on Samoylov. The files contain water and soil temperature data of the ponds, methane fluxes, measured with closed chambers in the centres without vascular plants and the margins with vascular plants, the contribution of plant mediated fluxes on total methane fluxes, the gas concentrations (methane and dissolved inorganic carbon, oxygen) in the soil and the water column of the ponds, microbial activities (methane production, methane oxidation, aerobic and anaerobic carbon dioxide production), total carbon pools in the different horizons of the bottom soils, soil bulk density, soil substance density, and soil porosity.
Resumo:
We have determined the concentrations and isotopic composition of noble gases in old oceanic crust and oceanic sediments and the isotopic composition of noble gases in emanations from subduction volcanoes. Comparison with the noble gas signature of the upper mantle and a simple model allow us to conclude that at least 98% of the noble gases and water in the subducted slab returns back into the atmosphere through subduction volcanism before they can be admixed into the earth's mantle. It seems that the upper mantle is inaccessible to atmospheric noble gases due to an efficient subduction barrier for volatiles.
Resumo:
Ne, Ar, Kr, Xe, and K2O were measured in representative samples of holocrystalline basalt from DSDP Hole 504B. No hiatus in inert gas abundance is recognized at the base of the "oxic" alteration zone and the extent rather than the nature of alteration appears to determine these abundances. When the inert gas abundances are separately plotted against K2O, two distinct trends of loss emerge, one for alteration involving K-gain, the other for K-loss. Apparent whole-rock K-Ar ages are anomalous in the upper 50 m of basement, and below 300 m sub-basement. In the intervening zone of basement, celadonization adds sufficient potassium and eliminates enough "primary" 40Ar early in the history of the basalts for "excess" 40Ar to become subordinate to radiogenic 40Ar in basalts showing potassium enrichment greater than 0.2%. Stratigraphically correct K-Ar ages are obtained, therefore, from K-enriched basalts of the oxic alteration zone.
Resumo:
The linguistic situation in Greek-speaking Cyprus has been traditionally described as a textbook case of diglossia à la Ferguson (1959) with Standard Modern Greek (SModGr) being labelled as the High variety and Cypriot Greek (CypGr), the regional ModGr variety of Cyprus, being labelled the Low variety (Arvaniti, 2011; Moschonas, 1996). More recently, however, it has been proposed that the linguistic repertoire available to speakers features an array of forms of CypGr, which is best described as a continuum ranging from basilectal to acrolectal varieties (Katsoyannou et al., 2006; Tsiplakou et al., 2006). The basilectal end encompasses low prestige varieties predominantly spoken in rural areas. The acrolectal end is occupied by the version of SModGr used in the public domain in Cyprus (Arvaniti, 2006/2010). SModGr is known to carry high prestige in Cyprus. Speakers of CypGr describe speakers of the standard as more attractive, more intelligent, more interesting and more educated than speakers of the Cypriot dialect (Papapavlou, 1998). In this paper, I explore the relation between SModGr and CypGr in a diasporic setting, namely, the Greek Cypriot community of London. The United Kingdom is home to a sizeable Greek Cypriot community, whose population is presently estimated to fall between 200,000 and 300,000 individuals (Christodoulou-Pipis, 1991; National Federation of Cypriots in the UK). Similarly to the Cyprus homeland, the members of the Greek Cypriot parikia (‘community’) share a rich linguistic repertoire, which, in addition to varieties of Greek, crucially includes English. As is often the case with diasporas, the parikia does not form a homogeneous speech community in that not all of its members have an equally good command of Greek or even English. Rather, different types of monolingual and bilingual speakers are found including a large number of heritage speakers in the sense of Benmamoun et al. (2013), Montrul (2008, 2015) and Polinsky & Kagan (2007). Twenty British-born heritage speakers of CypGr were interviewed on their attitudes towards the different varieties of Greek. Results indicate that the prestige relation between SModGr and CypGr that holds in Cyprus has been transplanted to the parikia. SModGr is widely perceived as the prestigious variety and is described in positive terms (‘correct’, ‘proper’). The use of CypGr, on the other hand, enjoys covert prestige: it is perceived as an index of solidarity and in-group membership but at the same time is also viewed by heritage speakers as reminiscent of the hardship and lack of education of the generation that brought CypGr to the UK. In certain cases, the use of CypGr by heritage speakers is actively discouraged by the first generation not only in the public domain but also in private domains such as the home. Active discouragement targets both lexical and grammatical variants that are traditionally associated with basilectal varieties of CypGr, and heritage language features, especially the adoption of morphologically adapted loanwords from English. References Arvaniti, Amalia. 2006/2010. Linguistic practices in Cyprus and the emergence of Cypriot Standard Greek. Mediterranean Language Review 17, 15–45. Benmamoun, Elabbas, Silvina Montrul & Maria Polinsky. 2013. Heritage languages and their speakers: opportunities and challenges for linguists. Theoretical Linguistics 39(3/4), 129–181. Christodoulou-Pipis, Irina. 1991. Greek Outside Greece: Language Use by Greek-Cypriots in Britain. Nicosia: Diaspora Books. Ferguson, Charles A. 1959. Diglossia. Word 15(2), 325–340. Katsoyannou, Marianna, Andreas Papapavlou, Pavlos Pavlou & Stavroula Tsiplakou. 2006. Didialektikes koinotites kai glossiko syneches: i periptosi tis kypriakis [Bidialectal communities and linguistic continuum: the case of Cypriot Greek]. In Mark Janse, Brian D. Joseph & Angela Ralli (eds.), Proceedings of the 2nd International Conference of Modern Greek Dialects and Linguistic Theory, Mytilene, Greece, 30 September – 3 October 2004, 156–171. Patras: University of Patras. Montrul, Silvina A. 2008. Incomplete Acquisition in Bilingualism: Re-examining the Age Factor. Amsterdam/Philadelphia: John Benjamins. Montrul, Silvina. 2015. The Acquisition of Heritage Languages. Cambridge: Cambridge University Press. Moschonas, Spiros. 1996. I glossiki dimorfia stin Kypro [Diglossia in Cyprus]. In “Ischyres” – “Astheneis” Glosses stin Evropaiki Enosi: Opseis tou glossikou igemonismou [“Strong” – “Weak” Languages in the European Union: Aspects of Linguistic Imperialism], 121–128. Thessaloniki: Kentro Ellinikis Glossas. Polinsky, Maria & Olga Kagan. 2007. Heritage languages: in the ‘wild’ and in the classroom. Languages and Linguistics Compass 1(5), 368–395. Tsiplakou, Stavroula, Andreas Papapavlou, Pavlos Pavlou & Marianna Katsoyannou. 2006. Levelling, koineization and their implications for bidialectism. In Frans L. Hinskens (Eds.), Language Variation – European Perspectives: Selected Papers from the Third International Conference on Language Variation in Europe (ICLaVE 3), Amsterdam, June 2005, 265–279. Amsterdam/Philadelphia: John Benjamins.
Resumo:
Forced convection heat transfer in a micro-channel filled with a porous material saturated with rarefied gas with internal heat generation is studied analytically in this work. The study is performed by analysing the boundary conditions for constant wall heat flux under local thermal non-equilibrium (LTNE) conditions. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous-fluid system is studied by considering thermally and hydrodynamically fully-developed conditions. The flow inside the porous material is modelled by the Darcy–Brinkman equation. Exact solutions are obtained for both the fluid and solid temperature distributions for two primary approaches models A and B using constant wall heat flux boundary conditions. The temperature distributions and Nusselt numbers for models A and B are compared, and the limiting cases resulting in the convergence or divergence of the two models are also discussed. The effects of pertinent parameters such as fluid to solid effective thermal conductivity ratio, Biot number, Darcy number, velocity slip and temperature jump coefficients, and fluid and solid internal heat generations are also discussed. The results indicate that the Nusselt number decreases with the increase of thermal conductivity ratio for both models. This contrasts results from previous studies which for model A reported that the Nusselt number increases with the increase of thermal conductivity ratio. The Biot number and thermal conductivity ratio are found to have substantial effects on the role of temperature jump coefficient in controlling the Nusselt number for models A and B. The Nusselt numbers calculated using model A change drastically with the variation of solid internal heat generation. In contrast, the Nusselt numbers obtained for model B show a weak dependency on the variation of internal heat generation. The velocity slip coefficient has no noticeable effect on the Nusselt numbers for both models. The difference between the Nusselt numbers calculated using the two models decreases with an increase of the temperature jump coefficient.
Resumo:
In Germany the upscaling algorithm is currently the standard approach for evaluating the PV power produced in a region. This method involves spatially interpolating the normalized power of a set of reference PV plants to estimate the power production by another set of unknown plants. As little information on the performances of this method could be found in the literature, the first goal of this thesis is to conduct an analysis of the uncertainty associated to this method. It was found that this method can lead to large errors when the set of reference plants has different characteristics or weather conditions than the set of unknown plants and when the set of reference plants is small. Based on these preliminary findings, an alternative method is proposed for calculating the aggregate power production of a set of PV plants. A probabilistic approach has been chosen by which a power production is calculated at each PV plant from corresponding weather data. The probabilistic approach consists of evaluating the power for each frequently occurring value of the parameters and estimating the most probable value by averaging these power values weighted by their frequency of occurrence. Most frequent parameter sets (e.g. module azimuth and tilt angle) and their frequency of occurrence have been assessed on the basis of a statistical analysis of parameters of approx. 35 000 PV plants. It has been found that the plant parameters are statistically dependent on the size and location of the PV plants. Accordingly, separate statistical values have been assessed for 14 classes of nominal capacity and 95 regions in Germany (two-digit zip-code areas). The performances of the upscaling and probabilistic approaches have been compared on the basis of 15 min power measurements from 715 PV plants provided by the German distribution system operator LEW Verteilnetz. It was found that the error of the probabilistic method is smaller than that of the upscaling method when the number of reference plants is sufficiently large (>100 reference plants in the case study considered in this chapter). When the number of reference plants is limited (<50 reference plants for the considered case study), it was found that the proposed approach provides a noticeable gain in accuracy with respect to the upscaling method.
Resumo:
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1G>C)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5'-UTR of HAMP gene (c.-25G>A). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.
Resumo:
The non-standard decoding of the CUG codon in Candida cylindracea raises a number of questions about the evolutionary process of this organism and other species Candida clade for which the codon is ambiguous. In order to find some answers we studied the transcriptome of C. cylindracea, comparing its behavior with that of Saccharomyces cerevisiae (standard decoder) and Candida albicans (ambiguous decoder). The transcriptome characterization was performed using RNA-seq. This approach has several advantages over microarrays and its application is booming. TopHat and Cufflinks were the software used to build the protocol that allowed for gene quantification. About 95% of the reads were mapped on the genome. 3693 genes were analyzed, of which 1338 had a non-standard start codon (TTG/CTG) and the percentage of expressed genes was 99.4%. Most genes have intermediate levels of expression, some have little or no expression and a minority is highly expressed. The distribution profile of the CUG between the three species is different, but it can be significantly associated to gene expression levels: genes with fewer CUGs are the most highly expressed. However, CUG content is not related to the conservation level: more and less conserved genes have, on average, an equal number of CUGs. The most conserved genes are the most expressed. The lipase genes corroborate the results obtained for most genes of C. cylindracea since they are very rich in CUGs and nothing conserved. The reduced amount of CUG codons that was observed in highly expressed genes may be due, possibly, to an insufficient number of tRNA genes to cope with more CUGs without compromising translational efficiency. From the enrichment analysis, it was confirmed that the most conserved genes are associated with basic functions such as translation, pathogenesis and metabolism. From this set, genes with more or less CUGs seem to have different functions. The key issues on the evolutionary phenomenon remain unclear. However, the results are consistent with previous observations and shows a variety of conclusions that in future analyzes should be taken into consideration, since it was the first time that such a study was conducted.
Resumo:
The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.
Resumo:
O crescimento da população mundial e a tentativa de substituição parcial dos combustíveis fósseis por novas fontes de energia têm levado a uma maior atenção quanto à possível escassez de alimentos e a carência de grandes áreas disponíveis para agricultura. Microalgas, por meio do metabolismo fotossintético, utilizam energia solar e gás carbônico como nutrientes para o crescimento. A microalga Spirulina pode ser utilizada como suplemento alimentar, na biofixação de CO2, como fonte de biocombustíveis e no tratamento de efluentes. A digestão anaeróbia da biomassa microalgal produz biogás e os resíduos deste processo podem ser utilizados como substrato para novos cultivos da microalga. O objetivo deste trabalho foi estudar a conversão de Spirulina sp. LEB-18 em biogás em escala piloto e produzir biomassa microalgal utilizando os efluentes bicarbonato e dióxido de carbono do processo anaeróbio como fonte de nutrientes. Spirulina foi utilizada como substrato na digestão anaeróbia para produção de biogás em escala piloto sob temperaturas variáveis (12- 38 °C). Efluente do processo anaeróbio foi adicionado (20 %, v/v) como fonte de carbono no cultivo da microalga para avaliar o crescimento e a composição da biomassa. A seguir foi avaliada a capacidade da microalga de remover CO2 presente no biogás através de biofixação para obtenção do biocombustível purificado. O biogás produzido sob as diferentes temperaturas apresentou entre 72,2 e 74,4 % de CH4, quando realizado nas temperaturas 12 a 21 °C e 26 a 38 °C, respectivamente. A redução na temperatura do processo anaeróbio provocou um decréscimo na conversão de biomassa em biogás (0,30 para 0,22 g.g-1 ), ocorrendo dentro da faixa adequada e segura para as bactérias metanogênicas (pH 6,9; alcalinidade entre 1706,0 e 2248,0 mg.L-1 CaCO3 e nitrogênio amoniacal 479,3 a 661,7 mg.L-1 ). Os cultivos de Spirulina sp. LEB-18 em efluente anaeróbio contendo 20 % (v/v) e meio Zarrouk modificado (NaHCO3 2,8 e 5,3 g.L-1 ) apresentaram velocidade específica máxima de crescimento entre 0,324 e 0,354 d-1 , produtividade volumétrica entre 0,280 e 0,297 g.L-1 .d-1 e produtividade areal entre 14,00 e 14,85 g.m-2 .d-1 , sem diferenças significativas (p > 0,05) entre as diferentes condições estudadas. Lipídios variaram entre 4,9 e 5,0 % com proporção de ácido linoleico maximizada nos meios com efluente e ácido alfa-linolênico reduzida nesses meios em comparação ao meio Zarrouk completo. Nos ensaios para avaliar a capacidade da microalga Spirulina sp. LEB-18 de remover CO2 contaminante no biogás, as máximas concentrações celulares e produtividades de biomassa variaram, respectivamente, entre 1,12 e 1,24 g.L-1 e 0,11 e 0,14 g.L-1 .d-1 , não apresentando diferenças significativas (p > 0,05) entre os ensaios. A maior fixação diária total (FDT) de dióxido de carbono obtida foi 58,01 % (v/v) em cultivos com adição de biogás contendo 25 % (v/v) CO2. Obteve-se biogás com 89,5 % (v/v) de CH4 após injeção em cultivos de Spirulina, no qual aproximadamente 45 % (v/v) do CO2 injetado foi fixado pela microalga, gerando biomassa para diversas aplicações e biogás purificado.
Resumo:
In this work, we introduce a new class of numerical schemes for rarefied gas dynamic problems described by collisional kinetic equations. The idea consists in reformulating the problem using a micro-macro decomposition and successively in solving the microscopic part by using asymptotic preserving Monte Carlo methods. We consider two types of decompositions, the first leading to the Euler system of gas dynamics while the second to the Navier-Stokes equations for the macroscopic part. In addition, the particle method which solves the microscopic part is designed in such a way that the global scheme becomes computationally less expensive as the solution approaches the equilibrium state as opposite to standard methods for kinetic equations which computational cost increases with the number of interactions. At the same time, the statistical error due to the particle part of the solution decreases as the system approach the equilibrium state. This causes the method to degenerate to the sole solution of the macroscopic hydrodynamic equations (Euler or Navier-Stokes) in the limit of infinite number of collisions. In a last part, we will show the behaviors of this new approach in comparisons to standard Monte Carlo techniques for solving the kinetic equation by testing it on different problems which typically arise in rarefied gas dynamic simulations.