864 resultados para real genetic algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las capacidades dinámicas constituyen un aporte importante a la estrategia empresarial. De acuerdo con esta premisa se desarrolla el siguiente documento, al reconocer que la generación de competencias se consolida como la base teórica para el logro de sostenibilidad ante eventos de cambio que puedan afectar la estabilidad y la toma de decisiones de las organizaciones. Dada la falta de aplicación empírica del concepto se ha elaborado este paper, en el que se demuestran e identifican las herramientas que la aplicación empiríca puede dar a las organizaciones y los instrumentos que proveen para la generación de valor. A través del caso de estudio ASOS.COM se ejemplifica la necesidad de detección y aprovechamiento de oportunidades y amenazas, así como la reconfiguración, renovación y generación de competencias de segundo orden para enfrentar el cambio. De esta manera por medio de las habilidades creadas al interior de las empresas con enfoque en el aprendizaje e innovación se logra la comprensión del negocio y el afianzamiento de mejores escenarios futuros.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La globalización y la competitividad como realidad de las empresas, implica que los gerentes preparen a sus empresas de la mejor manera para sobrevivir en este mundo tan inestable y cambiante. El primer paso consta de investigar y medir como se encuentra la empresa en cada uno de sus componentes, tales como recurso humano, mercadeo, logística, operación y por último y más importante las finanzas. El conocimiento de salud financiera y de los riesgos asociados a la actividad de las empresas, les permitirá a los gerentes tomar las decisiones correctas para ser rentables y perdurables en el mundo de los negocios inmerso en la globalización y competitividad. Esta apreciación es pertinente en Avianca S.A. esto teniendo en cuenta su progreso y evolución desde su primer vuelo el 5 de diciembre de 1919 comercial, hasta hoy cuando cotiza en la bolsa de Nueva York. Se realizó un análisis de tipo descriptivo, acompañado de la aplicación de ratios y nomenclaturas, dando lugar a establecer la salud financiera y los riesgos, no solo de Avianca sino también del sector aeronáutico. Como resultado se obtuvo que el sector aeronáutico sea financieramente saludable en el corto plazo, pero en el largo plazo su salud financiera se ve comprometida por los riegos asociados al sector y a la actividad desarrollada.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La computación evolutiva y muy especialmente los algoritmos genéticos son cada vez más empleados en las organizaciones para resolver sus problemas de gestión y toma de decisiones (Apoteker & Barthelemy, 2000). La literatura al respecto es creciente y algunos estados del arte han sido publicados. A pesar de esto, no hay un trabajo explícito que evalúe de forma sistemática el uso de los algoritmos genéticos en problemas específicos de los negocios internacionales (ejemplos de ello son la logística internacional, el comercio internacional, el mercadeo internacional, las finanzas internacionales o estrategia internacional). El propósito de este trabajo de grado es, por lo tanto, realizar un estado situacional de las aplicaciones de los algoritmos genéticos en los negocios internacionales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative structure activity relationships (QSARs) have been developed to optimise the choice of nitrogen heterocyclic molecules that can be used to separate the minor actinides such as americium(III) from europium(III) in the aqueous PUREX raffinate of nuclear waste. Experimental data on distribution coefficients and separation factors (SFs) for 47 such ligands have been obtained and show SF values ranging from 0.61 to 100. The ligands were divided into a training set of 36 molecules to develop the QSAR and a test set of 11 molecules to validate the QSAR. Over 1500 molecular descriptors were calculated for each heterocycle and the Genetic Algorithm was used to select the most appropriate for use in multiple regression equations. Equations were developed fitting the separation factors to 6-8 molecular descriptors which gave r(2) values of >0.8 for the training set and values of >0.7 for the test set, thus showing good predictive quality. The descriptors used in the equations were primarily electronic and steric. These equations can be used to predict the separation factors of nitrogen heterocycles not yet synthesised and/or tested and hence obtain the most efficient ligands for lanthanide and actinide separation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uncertainty contributes a major part in the accuracy of a decision-making process while its inconsistency is always difficult to be solved by existing decision-making tools. Entropy has been proved to be useful to evaluate the inconsistency of uncertainty among different respondents. The study demonstrates an entropy-based financial decision support system called e-FDSS. This integrated system provides decision support to evaluate attributes (funding options and multiple risks) available in projects. Fuzzy logic theory is included in the system to deal with the qualitative aspect of these options and risks. An adaptive genetic algorithm (AGA) is also employed to solve the decision algorithm in the system in order to provide optimal and consistent rates to these attributes. Seven simplified and parallel projects from a Hong Kong construction small and medium enterprise (SME) were assessed to evaluate the system. The result shows that the system calculates risk adjusted discount rates (RADR) of projects in an objective way. These rates discount project cash flow impartially. Inconsistency of uncertainty is also successfully evaluated by the use of the entropy method. Finally, the system identifies the favourable funding options that are managed by a scheme called SME Loan Guarantee Scheme (SGS). Based on these results, resource allocation could then be optimized and the best time to start a new project could also be identified throughout the overall project life cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the parametrisation of am-plitude and phase genes corre-sponding to space encoded femto-second transients in the wavelet domain. Differential evolution is used to improve the speed of con-vergence of the genetic algorithm. We discuss prospects of bio-molecular control using such methodology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the selection of inputs for classification models based on ratios of measured quantities. For this purpose, all possible ratios are built from the quantities involved and variable selection techniques are used to choose a convenient subset of ratios. In this context, two selection techniques are proposed: one based on a pre-selection procedure and another based on a genetic algorithm. In an example involving the financial distress prediction of companies, the models obtained from ratios selected by the proposed techniques compare favorably to a model using ratios usually found in the financial distress literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synapsing variable-length crossover (SVLC algorithm provides a biologically inspired method for performing meaningful crossover between variable-length genomes. In addition to providing a rationale for variable-length crossover, it also provides a genotypic similarity metric for variable-length genomes, enabling standard niche formation techniques to be used with variable-length genomes. Unlike other variable-length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC algorithm recurrently "glues" or synapses homogenous genetic subsequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable-length test problem, the SVLC algorithm compares favorably with current variable-length crossover techniques. The variable-length approach is further advocated by demonstrating how a variable-length genetic algorithm (GA) can obtain a high fitness solution in fewer iterations than a traditional fixed-length GA in a two-dimensional vector approximation task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective Clustering with automatic K-determination (MOCK). the algorithm most closely related to ours. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the useful life of a LAN, network downtimes will have a negative impact on organizational productivity not included in current Network Topological Design (NTD) problems. We propose a new approach to LAN topological design that includes the impact of these productivity losses into the network design, minimizing not only the CAPEX but also the expected cost of unproductiveness attributable to network downtimes over a certain period of network operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work demonstrates that the detuning of the fs-laser spectrum from the two-photon absorption band of organic materials can be used to reach further control of the two-photon absorption by pulse spectral phase manipulation. We investigate the coherent control of the two-photon absorption in imidazole-thiophene core compounds presenting distinct two-photon absorption spectra. The coherent control, performed using pulse phase shaping and genetic algorithm, exhibited different growth rates for each sample. Such distinct trends were explained by calculating the two-photon absorption probability considering the intrapulse interference mechanism, taking into account the two-photon absorption spectrum of the samples. Our results indicate that tuning the relative position between the nonlinear absorption and the pulse spectrum can be used as a novel strategy to optimize the two-photon absorption in broadband molecular systems. (C) 2011 Elsevier B.V. All rights reserved.