919 resultados para potassium blood level
Resumo:
Two groups of rainbow trout were acclimated to 20 , 100 , and 18 o C. Plasma sodium, potassium, and chloride levels were determined for both. One group was employed in the estimation of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, and CMg++)-dependent ATPase activities, while the other was used in the measurement of carbonic anhydrase activity in the blood, gill and kidney. Assays were conducted using two incubation temperature schemes. One provided for incubation of all preparations at a common temperature of 2S oC, a value equivalent to the upper incipient lethal level for this species. In the other procedure the preparations were incubated at the appropriate acclimation temperature of the sampled fish. Trout were able to maintain plasma sodium and chloride levels essentially constant over the temperature range employed. The different incubation temperature protocols produced different levels of activity, and, in some cases, contrary trends with respect to acclimation temperature. This information was discussed in relation to previous work on gill and kidney. The standing-gradient flow hypothesis was discussed with reference to the structure of the chloride cell, known thermallyinduced changes in ion uptake, and the enzyme activities obtained in this study. Modifications of the model of gill lon uptake suggested by Maetz (1971) were proposed; high and low temperature models resulting. In short, ion transport at the gill at low temperatures appears to involve sodium and chloride 2 uptake by heteroionic exchange mechanisms working in association w.lth ca.rbonlc anhydrase. G.l ll ( Na + -K + ) -ATPase and erythrocyte carbonic anhydrase seem to provide the supplemental uptake required at higher temperatures. It appears that the kidney is prominent in ion transport at low temperatures while the gill is more important at high temperatures. 3 Linear regression analyses involving weight, plasma ion levels, and enzyme activities indicated several trends, the most significant being the interrelationship observed between plasma sodium and chloride. This, and other data obtained in the study was considered in light of the theory that a link exists between plasma sodium and chloride regulatory mechanisms.
Resumo:
The effect of dietary sodium restriction on perceived intensity of and preference for the taste of salt was evaluated in 76 adults, 25-49 years, with diastolic blood pressure between 79-90 mmHg. Participants were volunteers from clinical Hypertension Prevention Trials (HPT), at the University of California, Davis and the University of Minnesota, Minneapolis. Participants followed one of four HPT diets: 1600 mg Na+/day (NA, n=lS), 1600 mg Na+ plus 3200 mg K+/day (NK, n=lS), 1600 mg Na+/day plus energy restriction to achieve weight loss (NW, n=l3) and weight loss only (WT, n=l3). All participants attended regularly scheduled nutrition intervention meetings designed to help them achieve the HPT dietary goals. A fifth, no-intervention group, consisted of 20, no-diet-change controls CCN). Sodium, potassium and energy intakes were monitored by analysis of single, 24-hour food records and corresponding overnight urine specimens, obtained at baseline and after 12 and 24 weeks of intervention. Hedonic responses to sodium chloride in a prepared cream of green bean soup were assessed by two methods : 1) scaling of like/dislike for an NaCl concentration series on 10-cm graphie line scales and 2) ad libitum mixing of unsalted and salted soups to maximum level of liking. Salt content of the mixes was analyzed by sodium ion-selective electrode. The concentration series was also rated for perceived saltinessintensity on similar graphie line scales. Tests were conducted at baseline and after approximately 1, 3, 6, 8, 10, 13 and 24 weeks of intervention. Reduction in sodium intake and excretion in NA, NK and NW participants was accompanied by a shift in preference toward less saltiness in soup. The pattern of hedonic responses changed over time: scores for high NaCl concentrations decreased progressively while scores for low concentrations increased. Hedonic maxima shifted fran a concentration of 0.55% at the onset to 0.1-0.2% added NaCl at week 24. During the same time period, the preferred concentration of ad libitum mixes declined 50%. These shifts occurred independently of changes in saltiness intensity ratings, potassium or energy intakes, and were consistent across the two participating study sites. Like/dislike and sd. libitum responses were similar after 13 and 24 weeks of diet, as were measures of sodium intake and excretion. These findings suggest that after three months of sodium restriction, preference for salt had readjusted to a lower level, reflective of lower sodium intake. Mechanisms underlying the change in preference are unclear, but may include sensory, context, physiological as well as behavioral effects. In contrast, few changes were noted within WT and CN groups. The pattern of hedonic responses varied little in controls while the WT group showed increased liking for mid-range NaCl concentrations. Small, but significant fluctuations in ad libitum mix concentration occurred in both of these groups, but the differences appeared to be random rather than systematic. The results of this study indicate that preference for the taste of salt declines progressively toward a new baseline following reductions in sodium intake. These alterations may enhance maintenance of lowsodium diets for the treatment and prevention of hypertension. Further investigation is needed to establish the degree to which long-term compliance is contingent upon variation in salt taste preference.
Resumo:
Optical absorption characteristics of rat blood affected by diabetes has been studied using photoacoustic (PA) technique. PA spectrum of blood depends on the molecular structure of haemoglobin. The peak value ratio ylQ increases with increase in the diabetic state. Externally added glucose to normal blood does not show any increase in y//3 ratio as seen in the diabetic condition . The increase in yl,8 ratio may be due to the decrease in DPG level and the resultant shift from R -> T conformation of majority of diabetic haemoglobin.
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test the controller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in meal estimation
Resumo:
Objetivos: Determinar si existe diferencia en la ganancia interdialítica entre los pacientes al ser tratados con flujo de dializado (Qd) de 400 mL/min y 500 mL/min. Diseño: Se realizó un estudio de intervención, cruzado, aleatorizado, doble ciego en pacientes con enfermedad renal crónica en hemodiálisis para determinar diferencias en la ganancia de peso interdialítica entre los pacientes tratados con flujo de dializado (Qd) de 400 ml/min y 500 ml/min. Pacientes: Se analizaron datos de 46 pacientes en hemodiálisis crónica con Qd de 400 ml/min y 45 con Qd de 500 ml/min. Análisis: La prueba de hipótesis para evaluar diferencias en la ganancia interdialítica y las otras variables entre los grupos se realizó mediante la prueba T para muestras pareadas. Para el análisis de correlación se calculó el coeficiente de Pearson. Resultados: No hubo diferencia significativa en ganancia interdialítica usando Qd de 400 ml/min vs 500 ml/min (2.37 ± 0.7 vs 2.41 ± 0.6, p=0.41) ni en Kt/V (1.57 ± 0.25 vs 1.59 ± 0.23, p = 0.45), potasio (4.9 ± 1.1 vs 5.1 ± 1.0, p=0.45), fosforo (4.5 ± 1.2 vs 4.4 ± 1.2, p=0.56) o hemoglobina (11.3 ± 1.8 vs 11.3 ± 1.6, p=0.96). Conclusiones: En pacientes con peso ≤ 65 Kg el uso de Qd de 400 ml/min no se asocia con menor ganancia interdialítica de peso. No hay diferencia en la eficiencia de diálisis lo que sugiere que es una intervención segura a corto plazo.
Resumo:
In this thesis I propose a novel method to estimate the dose and injection-to-meal time for low-risk intensive insulin therapy. This dosage-aid system uses an optimization algorithm to determine the insulin dose and injection-to-meal time that minimizes the risk of postprandial hyper- and hypoglycaemia in type 1 diabetic patients. To this end, the algorithm applies a methodology that quantifies the risk of experiencing different grades of hypo- or hyperglycaemia in the postprandial state induced by insulin therapy according to an individual patient’s parameters. This methodology is based on modal interval analysis (MIA). Applying MIA, the postprandial glucose level is predicted with consideration of intra-patient variability and other sources of uncertainty. A worst-case approach is then used to calculate the risk index. In this way, a safer prediction of possible hyper- and hypoglycaemic episodes induced by the insulin therapy tested can be calculated in terms of these uncertainties.
Resumo:
An experiment was carried out to establish the effect on the growth of pigs of including blood meal or lysine in diets containing gossypol from cottenseed cake. Forty Landrace x Large White pigs (20 of each sex) were randomly allocated to 5 treatments of 8 pigs each in a 2x2 factorial design with two levels of lysine or two levels of blood meal in the diets plus a control diet. The pigs were fed different diets and slaughtered at 75.0+/-2.0 kg live weight for carcase analysis. Supplementing the diets with blood meal resulted in higher live weight gains (p<0.001) and improved feed conversion ratios (p<0.001) than supplementing with lysine. Pigs fed the higher level of cottonseed cake showed a significant (p<0.001) depression in live weight gain and feed conversion ratio compared to those fed a low level of the cake. There was no significant difference (p>0.05) in intake in the pigs fed diets with cottonseed cake including blood meal or synthetic lysine. The kidney and liver weights of the pigs fed the diets with a higher level of cottonseed cake were significantly greater (p<0.001) than in those fed the lower level, but when the diets containing cottonseed cake were supplemented with blood meal or lysine at the same level there was no significant difference (p>0.05) in the weights of these organs. Lysine or other factors derived from blood meal appear to be more efficient than synthetic lysine in reducing the adverse effects of gossypol.
Resumo:
Numbers of leucocytes in squirrels with gametocytes of Hepatozoon in their blood (infected) were compared with animals without gametocytes (uninfected). Typical values for leucocytes/mm(3) blood in uninfected squirrels were: leucocytes 5-7 x 10(3), granulocytes 3-4 x 10(3), lymphocytes 2-0 x 10(3) and monocytes 0-3 x 10(3) cells. Infection caused an increase in monocytes, lymphocytes and granulocytes, and there was a significant positive association between parasitaemia level and numbers of both total leucocytes and monocytes. Infected animals had more uninfected monocytes/mm(3) blood than did uninfected animals. The proportions of monocytes were more variable over time in infected animals, but no shift between infected and uninfected status was detected. Transfer of serum from infected squirrels to mice resulted in elevated counts of total blood leucocytes, monocytes and granulocytes, but not of lymphocytes, as compared with controls. Serum from squirrels with high parasitaemias had a more marked effect than serum from squirrels with low parasitaemias. Results indicate an infection - related monocytosis, possibly controlled by cytokines, that increases the number of cells available for invasion by gametocytes, thus enhancing the chances of parasite transmission.
Resumo:
Background & aims: This study investigated the influence of four commercial lipid emulsions, Ivelip, ClinOleic, Omegaven and SMOFlipid (R), on lipid body formation, fatty acid composition and eicosanoid production by cultured human peripheral blood polymorphonuclear cells (PMN) and mononuclear cells (PBMC). Methods: PMN and PBMC were exposed to emulsions at concentrations ranging from 0.01 to 0.04%. Lipid body formation was assessed by microscopy, fatty acid composition by gas chromatography and eicosanoids by ELISA. Results: Stimulation of inflammatory cells and exposure to lipid emulsions promoted the formation of lipid bodies, but there did not appear to be differential effects of the emulsions tested. In contrast, there were differential effects of lipid emulsions on eicosanoid formation, particularly with regards to LTB4 production by PMN. Omegaven dramatically increased production of eicosanoids compared with the other emulsions in a dose-dependent manner. This effect was associated with a significantly higher level of lipid peroxides in the supernatants of cells exposed to Omegaven. Conclusions: Stimulation of inflammatory cells and exposure to lipid emulsions promotes lipid body formation and eicosanoid production, although the differential effects of different emulsions appear to be largely due to lipid peroxidation of unsaturated fatty acids in some emulsions in this in vitro system. (C) 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Diaminofluoresceins are widely used probes for detection and intracellular localization of NO formation in cultured/isolated cells and intact tissues. The fluorinated derivative, 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM), has gained increasing popularity in recent years due to its improved NO-sensitivity, pH-stability, and resistance to photo-bleaching compared to the first-generation compound, DAF-2. Detection of NO production by either reagent relies on conversion of the parent compound into a fluorescent triazole, DAF-FM-T and DAF-2-T, respectively. While this reaction is specific for NO and/or reactive nitrosating species, it is also affected by the presence of oxidants/antioxidants. Moreover, the reaction with other molecules can lead to the formation of fluorescent products other than the expected triazole. Thus additional controls and structural confirmation of the reaction products are essential. Using human red blood cells as an exemplary cellular system we here describe robust protocols for the analysis of intracellular DAF-FM-T formation using an array of fluorescence-based methods (laser-scanning fluorescence microscopy, flow cytometry and fluorimetry) and analytical separation techniques (reversed-phase HPLC and LC-MS/MS). When used in combination, these assays afford unequivocal identification of the fluorescent signal as being derived from NO and are applicable to most other cellular systems without or with only minor modifications.
Resumo:
Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.
Resumo:
The difference between the rate of change of cerebral blood volume (CBV) and cerebral blood flow (CBF) following stimulation is thought to be due to circumferential stress relaxation in veins (Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689). In this paper we explore the visco-elastic properties of blood vessels, and present a dynamic model relating changes in CBF to changes in CBV. We refer to this model as the visco-elastic windkessel (VW) model. A novel feature of this model is that the parameter characterising the pressure–volume relationship of blood vessels is treated as a state variable dependent on the rate of change of CBV, producing hysteresis in the pressure–volume space during vessel dilation and contraction. The VW model is nonlinear time-invariant, and is able to predict the observed differences between the time series of CBV and that of CBF measurements following changes in neural activity. Like the windkessel model derived by Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689, the VW model is primarily a model of haemodynamic changes in the venous compartment. The VW model is demonstrated to have the following characteristics typical of visco-elastic materials: (1) hysteresis, (2) creep, and (3) stress relaxation, hence it provides a unified model of the visco-elastic properties of the vasculature. The model will not only contribute to the interpretation of the Blood Oxygen Level Dependent (BOLD) signals from functional Magnetic Resonance Imaging (fMRI) experiments, but also find applications in the study and modelling of the brain vasculature and the haemodynamics of circulatory and cardiovascular systems.
Resumo:
It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.
Resumo:
The temporal relationship between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is important in the biophysical modeling and interpretation of the hemodynamic response to activation, particularly in the context of magnetic resonance imaging and the blood oxygen level-dependent signal. Grubb et al. (1974) measured the steady state relationship between changes in CBV and CBF after hypercapnic challenge. The relationship CBV proportional to CBFPhi has been used extensively in the literature. Two similar models, the Balloon (Buxton et al., 1998) and the Windkessel (Mandeville et al., 1999), have been proposed to describe the temporal dynamics of changes in CBV with respect to changes in CBF. In this study, a dynamic model extending the Windkessel model by incorporating delayed compliance is presented. The extended model is better able to capture the dynamics of CBV changes after changes in CBF, particularly in the return-to-baseline stages of the response.
Resumo:
Potassium and phosphorus are important macronutrients for crops but are often deficient in the field. Very little is known about how plants sense fluctuations in K and P and how information about K and P availability is integrated at the whole plant level into physiological and metabolic adaptations. This chapter reviews recent advances in discovering molecular responses of plants to K and P deficiency by microarray experiments. These studies provide us not only with a comprehensive picture of adaptive mechanisms, but also with a large number of transcriptional markers that can be used to identify upstream components of K and P signalling pathways. On the basis of the available information we discuss putative receptors and signals involved in the sensing and integration of K and P status both at the cellular and at the whole plant level. These involve membrane potential, voltage-dependent ion channels, intracellular Ca and pH, and transcription factors, as well as hormones and metabolites for systemic signalling. Genetic screens of reporter lines for transcriptional markers and metabolome analysis of K- and P-deficient plants are likely to further advance our knowledge in this area in the near future.