777 resultados para parallel-machine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette étude s’intéresse à l’évolution formelle du jeu d’aventure de 1976 à 1999. Elle se propose de mieux comprendre les facteurs historiques contribuant à l’apparition du genre, son institution et ses transformations. La recherche est fondée sur l’analyse du discours de la presse spécialisée en jeux d’ordinateur et d’un corpus étendu d’œuvres. L’une des thèses proposées est que l’identité générique du jeu d’aventure est fondée sur une expérience vidéoludique demeurant relativement constante malgré des variations importantes de formes. Cette expérience est assurée par la reproduction des principaux éléments d’une architecture générale de design de jeu inaugurée par Adventure en 1977. Les variations formelles ponctuelles résultent d’une négociation entre la volonté de s’adapter aux changements de contexte de l’écologie du jeu d’ordinateur et la résistance d’une architecture ludique établie. La pertinence d’une histoire d’un genre vidéoludique est justifiée au premier chapitre en fonction de l’état actuel des connaissances sur l’histoire du jeu vidéo et du jeu d’aventure. On y précise également le cadre théorique, la méthodologie et les sources étudiées. Le deuxième chapitre s’intéresse à la genèse d’Adventure de Crowther et Woods (1976; 1977) en fonction des diverses pratiques culturelles dans lesquelles l’œuvre s’inscrit. Cette analyse permet d’en dégager l’architecture ludique. Le troisième chapitre porte sur le « tournant narratif » du jeu d’aventure ayant lieu au début des années 1980. On y décrit différents facteurs historiques poussant le genre vers l’enchâssement d’histoires pré-écrites afin d’en faire un véhicule narratif. Le quatrième chapitre décrit le contexte du « tournant graphique », passage du jeu d’aventure d’une représentation textuelle à un régime visuel, ainsi que ses conséquences expérientielles. Le « tournant ergonomique » décrit au cinquième chapitre traite de l’apparition du modèle « pointer et cliquer » en fonction des avancées des connaissances concernant les interactions humain-machine ainsi que de la maturation du design de jeu comme pratique autonome. Le dernier chapitre relate l’apogée du jeu d’aventure au début de la révolution multimédia sous ses formes de film interactif et « Myst-like » puis du ralentissement – voire de l’arrêt – de son évolution formelle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’observation de l’exécution d’applications JavaScript est habituellement réalisée en instrumentant une machine virtuelle (MV) industrielle ou en effectuant une traduction source-à-source ad hoc et complexe. Ce mémoire présente une alternative basée sur la superposition de machines virtuelles. Notre approche consiste à faire une traduction source-à-source d’un programme pendant son exécution pour exposer ses opérations de bas niveau au travers d’un modèle objet flexible. Ces opérations de bas niveau peuvent ensuite être redéfinies pendant l’exécution pour pouvoir en faire l’observation. Pour limiter la pénalité en performance introduite, notre approche exploite les opérations rapides originales de la MV sous-jacente, lorsque cela est possible, et applique les techniques de compilation à-la-volée dans la MV superposée. Notre implémentation, Photon, est en moyenne 19% plus rapide qu’un interprète moderne, et entre 19× et 56× plus lente en moyenne que les compilateurs à-la-volée utilisés dans les navigateurs web populaires. Ce mémoire montre donc que la superposition de machines virtuelles est une technique alternative compétitive à la modification d’un interprète moderne pour JavaScript lorsqu’appliqué à l’observation à l’exécution des opérations sur les objets et des appels de fonction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De plus en plus de recherches sur les Interactions Humain-Machine (IHM) tentent d’effectuer des analyses fines de l’interaction afin de faire ressortir ce qui influence les comportements des utilisateurs. Tant au niveau de l’évaluation de la performance que de l’expérience des utilisateurs, on note qu’une attention particulière est maintenant portée aux réactions émotionnelles et cognitives lors de l’interaction. Les approches qualitatives standards sont limitées, car elles se fondent sur l’observation et des entrevues après l’interaction, limitant ainsi la précision du diagnostic. L’expérience utilisateur et les réactions émotionnelles étant de nature hautement dynamique et contextualisée, les approches d’évaluation doivent l’être de même afin de permettre un diagnostic précis de l’interaction. Cette thèse présente une approche d’évaluation quantitative et dynamique qui permet de contextualiser les réactions des utilisateurs afin d’en identifier les antécédents dans l’interaction avec un système. Pour ce faire, ce travail s’articule autour de trois axes. 1) La reconnaissance automatique des buts et de la structure de tâches de l’utilisateur, à l’aide de mesures oculométriques et d’activité dans l’environnement par apprentissage machine. 2) L’inférence de construits psychologiques (activation, valence émotionnelle et charge cognitive) via l’analyse des signaux physiologiques. 3) Le diagnostic de l‘interaction reposant sur le couplage dynamique des deux précédentes opérations. Les idées et le développement de notre approche sont illustrés par leur application dans deux contextes expérimentaux : le commerce électronique et l’apprentissage par simulation. Nous présentons aussi l’outil informatique complet qui a été implémenté afin de permettre à des professionnels en évaluation (ex. : ergonomes, concepteurs de jeux, formateurs) d’utiliser l’approche proposée pour l’évaluation d’IHM. Celui-ci est conçu de manière à faciliter la triangulation des appareils de mesure impliqués dans ce travail et à s’intégrer aux méthodes classiques d’évaluation de l’interaction (ex. : questionnaires et codage des observations).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La traduction statistique requiert des corpus parallèles en grande quantité. L’obtention de tels corpus passe par l’alignement automatique au niveau des phrases. L’alignement des corpus parallèles a reçu beaucoup d’attention dans les années quatre vingt et cette étape est considérée comme résolue par la communauté. Nous montrons dans notre mémoire que ce n’est pas le cas et proposons un nouvel aligneur que nous comparons à des algorithmes à l’état de l’art. Notre aligneur est simple, rapide et permet d’aligner une très grande quantité de données. Il produit des résultats souvent meilleurs que ceux produits par les aligneurs les plus élaborés. Nous analysons la robustesse de notre aligneur en fonction du genre des textes à aligner et du bruit qu’ils contiennent. Pour cela, nos expériences se décomposent en deux grandes parties. Dans la première partie, nous travaillons sur le corpus BAF où nous mesurons la qualité d’alignement produit en fonction du bruit qui atteint les 60%. Dans la deuxième partie, nous travaillons sur le corpus EuroParl où nous revisitons la procédure d’alignement avec laquelle le corpus Europarl a été préparé et montrons que de meilleures performances au niveau des systèmes de traduction statistique peuvent être obtenues en utilisant notre aligneur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paralogs are present during ribosome biogenesis as well as in mature ribosomes in form of ribosomal proteins, and are commonly believed to play redundant functions within the cell. Two previously identified paralogs are the protein pair Ssf1 and Ssf2 (94% homologous). Ssf2 is believed to replace Ssf1 in case of its absence from cells, and depletion of both proteins leads to severely impaired cell growth. Results reveal that, under normal conditions, the Ssf paralogs associate with similar sets of proteins but with varying stabilities. Moreover, disruption of their pre-rRNP particles using high stringency buffers revealed that at least three proteins, possibly Dbp9, Drs1 and Nog1, are strongly associated with each Ssf protein under these conditions, and most likely represent a distinct subcomplex. In this study, depletion phenotypes obtained upon altering Nop7, Ssf1 and/or Ssf2 protein levels revealed that the Ssf paralogs cannot fully compensate for the depletion of one another because they are both, independently, required along parallel pathways that are dependent on the levels of availability of specific ribosome biogenesis proteins. Finally, this work provides evidence that, in yeast, Nop7 is genetically linked with both Ssf proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce mémoire, nous examinons certaines propriétés des représentations distribuées de mots et nous proposons une technique pour élargir le vocabulaire des systèmes de traduction automatique neurale. En premier lieu, nous considérons un problème de résolution d'analogies bien connu et examinons l'effet de poids adaptés à la position, le choix de la fonction de combinaison et l'impact de l'apprentissage supervisé. Nous enchaînons en montrant que des représentations distribuées simples basées sur la traduction peuvent atteindre ou dépasser l'état de l'art sur le test de détection de synonymes TOEFL et sur le récent étalon-or SimLex-999. Finalament, motivé par d'impressionnants résultats obtenus avec des représentations distribuées issues de systèmes de traduction neurale à petit vocabulaire (30 000 mots), nous présentons une approche compatible à l'utilisation de cartes graphiques pour augmenter la taille du vocabulaire par plus d'un ordre de magnitude. Bien qu'originalement développée seulement pour obtenir les représentations distribuées, nous montrons que cette technique fonctionne plutôt bien sur des tâches de traduction, en particulier de l'anglais vers le français (WMT'14).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel legal systems can and do exist within a single sovereign nation, and rural Guatemala offers one example. Such parallel systems are generally viewed as failures of legal penetration which compromise the rule of law. The question addressed in this paper is whether the de facto existence of parallel systems in Guatemala benefits the indigenous population, or whether the ultimate goal of attaining access to justice requires a complete overhaul of the official legal system. Ultimately, the author concludes that while the official justice system needs a lot of work in order to expand access to justice, especially for the rural poor, the existence of a parallel legal system can be a vehicle for, rather than a hindrance to, expanding such access.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamics of Nd:YAG laser with intracavity KTP crystal operating in two parallel polarized modes is investigated analytically and numerically. System equilibrium points were found out and the stability of each of them was checked using Routh–Hurwitz criteria and also by calculating the eigen values of the Jacobian. It is found that the system possesses three equilibrium points for (Ij, Gj), where j = 1, 2. One of these equilibrium points undergoes Hopf bifurcation in output dynamics as the control parameter is increased. The other two remain unstable throughout the entire region of the parameter space. Our numerical analysis of the Hopf bifurcation phenomena is found to be in good agreement with the analytical results. Nature of energy transfer between the two modes is also studied numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animportant step in the residue number system(RNS) based signal processing is the conversion of signal into residue domain. Many implementations of this conversion have been proposed for various goals, and one of the implementations is by a direct conversion from an analogue input. A novel approach for analogue-to-residue conversion is proposed in this research using the most popular Sigma–Delta analogue-to-digital converter (SD-ADC). In this approach, the front end is the same as in traditional SD-ADC that uses Sigma–Delta (SD) modulator with appropriate dynamic range, but the filtering is doneby a filter implemented usingRNSarithmetic. Hence, the natural output of the filter is an RNS representation of the input signal. The resolution, conversion speed, hardware complexity and cost of implementation of the proposed SD based analogue-to-residue converter are compared with the existing analogue-to-residue converters based on Nyquist rate ADCs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes JERIM-320, a new 320-bit hash function used for ensuring message integrity and details a comparison with popular hash functions of similar design. JERIM-320 and FORK -256 operate on four parallel lines of message processing while RIPEMD-320 operates on two parallel lines. Popular hash functions like MD5 and SHA-1 use serial successive iteration for designing compression functions and hence are less secure. The parallel branches help JERIM-320 to achieve higher level of security using multiple iterations and processing on the message blocks. The focus of this work is to prove the ability of JERIM 320 in ensuring the integrity of messages to a higher degree to suit the fast growing internet applications