896 resultados para parabolic-elliptic equation, inverse problems, factorization method
Resumo:
We prove global existence of nonnegative solutions to the one dimensional degenerate parabolic problems containing a singular term. We also show the global quenching phenomena for L1 initial datums. Moreover, the free boundary problem is considered in this paper.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional inverse Stefan problem for the heat equation by extending the MFS proposed in [5] for the one-dimensional direct Stefan problem. The sources are placed outside the space domain of interest and in the time interval (-T, T). Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate and stable results can be obtained efficiently with small computational cost.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
Kozlov & Maz'ya (1989, Algebra Anal., 1, 144–170) proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems. However, in many applied problems, operators appear that do not satisfy these requirements, e.g. Helmholtz-type operators. Therefore, in this study, an alternating procedure for solving Cauchy problems for self-adjoint non-coercive elliptic operators of second order is presented. A convergence proof of this procedure is given.
Resumo:
We present a novel numerical method for a mixed initial boundary value problem for the unsteady Stokes system in a planar doubly-connected domain. Using a Laguerre transformation the unsteady problem is reduced to a system of boundary value problems for the Stokes resolvent equations. Employing a modied potential approach we obtain a system of boundary integral equations with various singularities and we use a trigonometric quadrature method for their numerical solution. Numerical examples are presented showing that accurate approximations can be obtained with low computational cost.
Resumo:
We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.
Resumo:
We extend a meshless method of fundamental solutions recently proposed by the authors for the one-dimensional two-phase inverse linear Stefan problem, to the nonlinear case. In this latter situation the free surface is also considered unknown which is more realistic from the practical point of view. Building on the earlier work, the solution is approximated in each phase by a linear combination of fundamental solutions to the heat equation. The implementation and analysis are more complicated in the present situation since one needs to deal with a nonlinear minimization problem to identify the free surface. Furthermore, the inverse problem is ill-posed since small errors in the input measured data can cause large deviations in the desired solution. Therefore, regularization needs to be incorporated in the objective function which is minimized in order to obtain a stable solution. Numerical results are presented and discussed. © 2014 IMACS.
Resumo:
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.
Resumo:
Иван Димовски, Юлиан Цанков - Предложено е разширение на принципa на Дюамел. За намиране на явно решение на нелокални гранични задачи от този тип е развито операционно смятане основано върху некласическа двумерна конволюция. Пример от такъв тип е задачата на Бицадзе-Самарски.
Resumo:
Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.
Resumo:
Uniqueness of a solution is investigated for some inverse source problems arising in linear parabolic equations. We prove new uniqueness results formulated in Theorems 3.1 and 3.2. We also show optimality of the conditions under which uniqueness holds by explicitly constructing counterexamples, that is by constructing more than one solution in the case when the conditions for uniqueness are violated.
Resumo:
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.
Resumo:
Underwater sound is very important in the field of oceanography where it is used for remote sensing in much the same way that radar is used in atmospheric studies. One way to mathematically model sound propagation in the ocean is by using the parabolic-equation method, a technique that allows range dependent environmental parameters. More importantly, this method can model sound transmission where the source emits either a pure tone or a short pulse of sound. Based on the parabolic approximation method and using the split-step Fourier algorithm, a computer model for underwater sound propagation was designed and implemented. This computer model differs from previous models in its use of the interactive mode, structured programming, modular design, and state-of-the-art graphics displays. In addition, the model maximizes the efficiency of computer time through synchronization of loosely coupled dual processors and the design of a restart capability. Since the model is designed for adaptability and for users with limited computer skills, it is anticipated that it will have many applications in the scientific community.
Resumo:
We extend some previous existence results for quenching type parabolic problems involving a negative power of the unknown in the equation to the case of merely integrable initial data. We show that L1 Ω is the suitable framework to obtain the continuous dependence with respect to some norm of the initial datum; This way we answer to the question raised by several authors in the previous literature. We also show the complete quenching phenomena for such a L1-initial datum.
Resumo:
We introduce a residual-based a posteriori error indicator for discontinuous Galerkin discretizations of the biharmonic equation with essential boundary conditions. We show that the indicator is both reliable and efficient with respect to the approximation error measured in terms of a natural energy norm, under minimal regularity assumptions. We validate the performance of the indicator within an adaptive mesh refinement procedure and show its asymptotic exactness for a range of test problems.