961 resultados para para-orthogonal polynomials
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The nearest-neighbor spacing distributions proposed by four models, namely, the Berry-Robnik, Caurier-Grammaticos-Ramani, Lenz-Haake, and the deformed Gaussian orthogonal ensemble, as well as the ansatz by Brody, are applied to the transition between chaos and order that occurs in the isotropic quartic oscillator. The advantages and disadvantages of these five descriptions are discussed. In addition, the results of a simple extension of the expression for the Dyson-Mehta statistic Δ3 are compared with those of a more popular one, usually associated with the Berry-Robnik formalism. ©1999 The American Physical Society.
Resumo:
An extremal problem for the coefficients of sine polynomials, which are nonnegative in [0,π] , posed and discussed by Rogosinski and Szego is under consideration. An analog of the Fejér-Riesz representation of nonnegative general trigonometric and cosine polynomials is proved for nonnegative sine polynomials. Various extremal sine polynomials for the problem of Rogosinski and Szego are obtained explicitly. Associated cosine polynomials k n (θ) are constructed in such a way that { k n (θ) } are summability kernels. Thus, the L p , pointwise and almost everywhere convergence of the corresponding convolutions, is established. © 2002 Springer-Verlag New York Inc.
Resumo:
We present new sharp inequalities for the Maclaurin coefficients of an entire function from the Laguerre-Pólya class. They are obtained by a new technique involving the so-called very hyperbolic polynomials. The results may be considered as extensions of the classical Turán inequalities. © 2010 Elsevier Inc.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this research was to estimate (co) variance functions and genetic parameters for body weight in Colombian buffalo populations using random regression models with Legendre polynomials. Data consisted of 34,738 weight records from birth to 900 days of age from 7815 buffaloes. Fixed effects in the model were contemporary group and parity order of the mother. Random effects were direct and maternal additive genetic, as well as animal and maternal permanent environmental effects. A cubic orthogonal Legendre polynomial was used to model the mean curve of the population. Eleven models with first to sixth order polynomials were used to describe additive genetic direct and maternal effects, and animal and maternal permanent environmental effects. The residual was modeled considering five variance classes. The best model included fourth and sixth order polynomials for direct additive genetic and animal permanent environmental effects, respectively, and third-order polynomials for maternal genetic and maternal permanent environmental effects. The direct heritability increased from birth until 120 days of age (0.32 +/- 0.05), decreasing thereafter until one year of age (0.18 +/- 0.04) and increased again, reaching 0.39 +/- 0.09, at the end of the evaluated period. The highest maternal heritability estimates (0.11 +/- 0.05), were obtained for weights around weaning age (weaning age range is between 8 and 9.5 months). Maternal genetic and maternal permanent environmental variances increased from birth until about one year of age, decreasing at later ages. Direct genetic correlations ranged from moderate (0.60 +/- 0.060) to high (0.99 +/- 0.001), maternal genetic correlations showed a similar range (0.41 +/- 0.401 and 0.99 +/- 0.003), and all of them decreased as time between weighings increased. Direct genetic correlations suggested that selecting buffalos for heavier weights at any age would increase weights from birth through 900 days of age. However, higher heritabilities for direct genetic weights effects after 600 days of age suggested that selection for these effects would be more effective if done during this age period. A greater response to selection for maternal ability would be expected if selection used maternal genetic predictions for weights near weaning. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)