929 resultados para non-uniform scale perturbation finite difference scheme
Resumo:
The assembly of a photochemical reactor with six fluorescent lamps, used for photopolymerizations is described. This chamber presents a mobile support, allowing the placement of samples at different heights and a safety lock that interrupts the radiation, if it is opened during operation. The mirrored internal walls avoid the dispersion and non-uniform distribution of light. There is no high heating because the own character of the used lamps. All parts could be purchased in commerce with less than U$ 150,00. This reactor was successfully used for monolithic stationary phase photopolymerization.
Resumo:
The Clement-Desormes experiment is reviewed. By reason of a finite difference between the pressure within the system and its surroundings, Bertrand and McDonald have criticized the usual consideration of the adiabatic expansion as reversible. Garland, Nibler and Shoemaker oppose, defining regions through virtual boundaries where the surroundings do not operate. For Holden, the use of virtual boundaries is expendable. Experiments cannot support a hypothesis testing due to experiment's intrinsic uncertainty. The role of polytropy in uncertainty is discussed. Both thermodynamic definitions and kinetic model depict the real processes as irreversible phenomena and the reversible ones as a limiting hypothetical case.
Resumo:
Pyörivien sähkökoneiden suunnittelussa terminen suunnittelu on yhtä tärkeää kuin sähköinen ja mekaaninen suunnittelukin. Tässä diplomityössä tarkoituksena on kehittää ilmajäähdytteisten kestomagneettigeneraattorien laskentaan soveltuva lämmönsiirtymismalli, jolla staattorin lämpötilajakauma voitaisiin selvittää. Kehitetty lämmönsiirtymismalli perustuu kolmiulotteiseen äärellisen erotuksen (finite difference) menetelmään. Malli ottaa huomioon lämmönjohtumisen staattorin aktiiviosissa ja konvektion jäähdytysilmavirtaan. Mallissa on myös yksinkertainen painehäviölaskenta jäähdytysjärjestelmän komponenttien mitoittamista varten. Laskentamallilla lasketaan esimerkkitapauksena 4,3 MW:n kestomagneettigeneraattorin jäähdytystä eri toimintapisteissä. Tuloksia verrataan CFD-mallinnuksen antamiin tuloksiin sekä kokeellisten mittausten antamiin tuloksiin.
Resumo:
Print quality and the printability of paper are very important attributes when modern printing applications are considered. In prints containing images, high print quality is a basic requirement. Tone unevenness and non uniform glossiness of printed products are the most disturbing factors influencing overall print quality. These defects are caused by non ideal interactions of paper, ink and printing devices in high speed printing processes. Since print quality is a perceptive characteristic, the measurement of unevenness according to human vision is a significant problem. In this thesis, the mottling phenomenon is studied. Mottling is a printing defect characterized by a spotty, non uniform appearance in solid printed areas. Print mottle is usually the result of uneven ink lay down or non uniform ink absorption across the paper surface, especially visible in mid tone imagery or areas of uniform color, such as solids and continuous tone screen builds. By using existing knowledge on visual perception and known methods to quantify print tone variation, a new method for print unevenness evaluation is introduced. The method is compared to previous results in the field and is supported by psychometric experiments. Pilot studies are made to estimate the effect of optical paper characteristics prior to printing, on the unevenness of the printed area after printing. Instrumental methods for print unevenness evaluation have been compared and the results of the comparison indicate that the proposed method produces better results in terms of visual evaluation correspondence. The method has been successfully implemented as ail industrial application and is proved to be a reliable substitute to visual expertise.
Resumo:
Preattentive perception of occasional deviating stimuli in the stream of standard stimuli can be recorded with cognitive event-related potential (ERP) mismatch negativity (MMN). The earlier detection of stimuli at the auditory cortex can be examined with N1 and P2 ERPs. The MMN recording does not require co-operation, it correlates with perceptual threshold, and even complex sounds can be used as stimuli. The aim of this study was to examine different aspects that should be considered when measuring discrimination of hearing with ERPs. The MMN was found to be stimulusintensity- dependent. As the intensity of sine wave stimuli was increased from 40 to 80 dB HL, MMN mean amplitudes increased. The effect of stimulus frequency on the MMN was studied so that the pitch difference would be equal in each stimulus block according to the psychophysiological mel scale or the difference limen of frequency (DLF). However, the blocks differed from each other. The contralateral white noise masking (50 dB EML) was found to attenuate the MMN amplitude when the right ear was stimulated. The N1 amplitude was attenuated and, in contrast, P2 amplitude was not affected by contralateral white noise masking. The perception and production of vowels by four postlingually deafened patients with a cochlear implant were studied. The MMN response could be elicited in the patient with the best vowel perception abilities. The results of the studies show that concerning the MMN recordings, the stimulus parameters and recording procedure design have a great influence on the results.
Resumo:
Composite flooring systems supported by tapered (varying web depth) beams are very attractive from an economic point of view. However, the tapered beam sections are fabricated from plate by welding, and are susceptible to imperfection effects. These may interact with the localised compressive stress field that is generated in the web at a slope change in the lower flange to cause local web buckling. A substantial parametric study using a non-linear elasto-plastic finite element program and covering practical ranges of the important parameters including the area of the tension flange, taper slope and web thickness is reported. Moment-rotation relations, peak moments and failure mechanisms have been predicted. The validity of the work is supported by the good correlation obtained between the results of the parametric study and experimental data.
Resumo:
This work presents the implementation and comparison of three different techniques of three-dimensional computer vision as follows: • Stereo vision - correlation between two 2D images • Sensorial fusion - use of different sensors: camera 2D + ultrasound sensor (1D); • Structured light The computer vision techniques herein presented took into consideration the following characteristics: • Computational effort ( elapsed time for obtain the 3D information); • Influence of environmental conditions (noise due to a non uniform lighting, overlighting and shades); • The cost of the infrastructure for each technique; • Analysis of uncertainties, precision and accuracy. The option of using the Matlab software, version 5.1, for algorithm implementation of the three techniques was due to the simplicity of their commands, programming and debugging. Besides, this software is well known and used by the academic community, allowing the results of this work to be obtained and verified. Examples of three-dimensional vision applied to robotic assembling tasks ("pick-and-place") are presented.
Resumo:
The majority of cotton grown commercially in the world has white lint, but recently, there has been a growing interest in colored lint cotton in several countries, including Brazil. The use of naturally-colored fiber reduces chemical pollution. The objective of this paper was to evaluate cotton cultivar fiber yield in response to weed control via intercropping with gliricídia. Cultivars BRS-Verde (greenish fibers), BRS-Rubi (reddish brown fibers), BRS-Safira (brown fibers), and BRS-187 8H (white fibers) were submitted to the following treatments: no hoeing, two hoeings (at 20 and 40 days after transplanting), and cotton intercropped with gliricídia. In the intercropped treatment, gliricídia was planted between rows of cotton plants, using one seedling pit-1, in pits spaced 50.0 cm apart. Twelve weed species predominated in the experiment, many of them belonging to the Poaceae family. Weeds occurred at different frequencies and in a non-uniform manner in the experimental area. Cultivars did not influence weed dry matter. Intercropping with gliricídia reduced weed dry matter but did not prevent reductions in cotton fiber and seed cotton yield, which were higher in hoed plots. Cultivar BRS Safira had the highest fiber yield, but no differences were observed between cultivars regarding to seed cotton yield.
Resumo:
The interferometer for low resolution portable Fourier Transform middle infrared spectrometer was developed and studied experimentally. The final aim was a concept for a commercial prototype. Because of the portability, the interferometer should be compact sized and insensitive to the external temperature variations and mechanical vibrations. To minimise the size and manufacturing costs, Michelson interferometer based on plane mirrors and porch swing bearing was selected and no dynamic alignment system was applied. The driving motor was a linear voice coil actuator to avoid mechanical contact of the moving parts. The driving capability for low mirror driving velocities required by the photoacoustic detectors was studied. In total, four versions of such an interferometer were built and experimentally studied. The thermal stability during the external temperature variations and the alignment stability over the mirror travel were measured using the modulation depth of the wide diameter laser beam. Method for estimating the mirror tilt angle from the modulation depth was developed to take account the effect from the non-uniform intensity distribution of the laser beam. The spectrometer stability was finally studied also using the infrared radiation. The latest interferometer was assembled for the middle infrared spectrometer with spectral range from 750 cm−1 to 4500 cm−1. The interferometer size was (197 × 95 × 79) mm3 with the beam diameter of 25 mm. The alignment stability as the change of the tilt angle over the mirror travel of 3 mm was 5 μrad, which decreases the modulation depth only about 0.7 percent in infrared at 3000 cm−1. During the temperature raise, the modulation depth at 3000 cm−1 changed about 1 . . . 2 percentage units per Celsius over short term and even less than 0.2 percentage units per Celsius over the total temperature raise of 30 °C. The unapodised spectral resolution was 4 cm−1 limited by the aperture size. The best achieved signal to noise ratio was about 38 000:1 with commercially available DLaTGS detector. Although the vibration sensitivity requires still improving, the interferometer performed, as a whole, very well and could be further developed to conform all the requirements of the portable and stable spectrometer.
Resumo:
Organismic-centered Darwinism, in order to use direct phenotypes to measure natural selection's effect, necessitates genome's harmony and uniform coherence plus large population sizes. However, modern gene-centered Darwinism has found new interpretations to data that speak of genomic incoherence and disharmony. As a result of these two conflicting positions a conceptual crisis in Biology has arisen. My position is that the presence of small, even pocket-size, demes is instrumental in generating divergence and phenotypic crisis. Moreover, the presence of parasitic genomes as in acanthocephalan worms, which even manipulate suicidal behavior in their hosts; segregation distorters that change meiosis and Mendelian ratios; selfish genes and selfish whole chromosomes, such as the case of B-chromosomes in grasshoppers; P-elements in Drosophila; driving Y-chromosomes that manipulate sex ratios making males more frequent, as in Hamilton's X-linked drive; male strategists and outlaw genes, are eloquent examples of the presence of real conflicting genomes and of a non-uniform phenotypic coherence and genome harmony. Thus, we are proposing that overall incoherence and disharmony generate disorder but also more biodiversity and creativeness. Finally, if genes can manipulate natural selection, they can multiply mutations or undesirable characteristics and even lethal or detrimental ones, hence the accumulation of genetic loads. Outlaw genes can change what is adaptively convenient even in the direction of the trait that is away from the optimum. The optimum can be "negotiated" among the variants, not only because pleiotropic effects demand it, but also, in some cases, because selfish, outlaw, P-elements or extended phenotypic manipulation require it. With organismic Darwinism the genome in the population and in the individual was thought to act harmoniously without conflicts, and genotypes were thought to march towards greater adaptability. Modern Darwinism has a gene-centered vision in which genes, as natural selection's objects can move in dissonance in the direction which benefits their multiplication. Thus, we have greater opportunities for genomes in permanent conflict.
Resumo:
The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99% with half the output rate as a bus-based system. The network-based solution avoids “broken” columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of > 10% to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling (TLM) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of > 10 in run-time is observed using these techniques compared to register transfer level (RTL) design technique. Reduction of 50% for lines-of-code (LoC) for the high-level models compared to the RTL description has been achieved. Two architectures are then demonstrated in two hybrid pixel readout chips. The first chip, Timepix3 has been designed for the Medipix3 collaboration. According to the measurements, it consumes < 1 W/cm^2. It also delivers up to 40 Mhits/s/cm^2 with 10-bit time-over-threshold (ToT) and 18-bit time-of-arrival (ToA) of 1.5625 ns. The chip uses a token-arbitrated, asynchronous two-phase handshake column bus for internal data transfer. It has also been successfully used in a multi-chip particle tracking telescope. The second chip, VeloPix, is a readout chip being designed for the upgrade of Vertex Locator (VELO) of the LHCb experiment at CERN. Based on the simulations, it consumes < 1.5 W/cm^2 while delivering up to 320 Mpackets/s/cm^2, each packet containing up to 8 pixels. VeloPix uses a node-based data fabric for achieving throughput of 13.3 Mpackets/s from the column to the EoC. By combining Monte Carlo physics data with high-level simulations, it has been demonstrated that the architecture meets requirements of the VELO (260 Mpackets/s/cm^2 with efficiency of 99%).
Resumo:
The effective diffusivity of clove essential oil in subcritical liquid CO2 was estimated. The experimental apparatus employed was a fixed-bed extractor. The fixed bed was formed with grounded (mesh -32 + 65) and compacted clove buds which were considered a solid element. The effective diffusion coefficient was evaluated by fitting the experimental concentration profile to the unsteady state mass balance equation for unidirectional diffusion in a finite solid medium. The diffusion coefficient was related to the concentration of oil in the solid by an exponential function. The estimated values of the effective diffusion coefficient varied from 3.64 to 5.22x10-10 m2/s. The average relative errors were lower than 3.1%.
Resumo:
A light snack was developed using a fat replacer as a flavor fixative agent. The product presented a calorie reduction of up to 47.5% in comparison with products available on the market. The impact of this fat replacer on the sensory properties was determined by comparing this light snack to the traditional ones. No significant difference in texture was observed; however, there was a difference in color (deltaE = 8.67), due mainly to luminosity (deltaL = 7.79). The light snack presented high sensory acceptability (7.27 ± 1.3; 82.5% of grades were > 7 on 9-point hedonic scale); no significant difference in snack acceptability was observed. However, the traditional snack was significantly preferred in sensory terms (p < 0.05). In an opinion survey when the consumers were informed about snack composition, 75% of them said that they would buy the light snack instead of the traditional one. The caloric and fat reductions allow the use of the claims "light snack" and "fat free", in accordance with the legislation of various countries. We conclude that it is technologically possible to use a fat replacer in snack production, resulting in a sensory acceptable light snack with great potential to replace traditional ones.
Resumo:
The descriptive terminology and sensory prolife of four samples of Italian salami were determined using a methodology based on the Quantitative Descriptive Analysis (QDA). A sensory panel consensually defined sensory descriptors, their respective reference materials, and the descriptive evaluation ballot. Twelve individuals were selected as judges and properly trained. They used the following criteria: discriminating power, reproducibility, and individual consensus. Twelve descriptors were determined showing similarities and differences among the Italian salami samples. Each descriptor was evaluated using a 10 cm non-structured scale. The data were analyzed by ANOVA, Tukey test, and the Principal Component Analysis (PCA). The salami with coriander essential oil (T3) had lower rancid taste and rancid odor, whereas the control (T1) showed high values of these sensory attributes. Regarding brightness, T4 showed the best result. For the other attributes, T1, T2, T3, and T4 were similar.
Resumo:
This study aimed at assessing the stability of passion fruit juice in glass bottles during a 120-day storage period, regarding its volatile compounds profile and sensory properties (aroma and flavor). Samples were obtained from a Brazilian tropical juice industry (Fortaleza, Brazil) and submitted to sensory and chromatographic analyses. The characteristic aroma and flavor of passion fruit were evaluated by a trained panel with a non-structured scale of 9 cm. The headspace volatile compounds were isolated from the product by suction and trapped in Porapak Q, analyzed through high-resolution gas chromatography and identified through gas chromatography-mass spectrometry (GC-MS). Twelve odoriferous compounds were monitored: ethyl butanoate, ethyl propanoate, 3-methyl-1-butanol, 3-methyl-2-butenol, (E)-3-hexenol, (Z)-3-hexenol, 3-methylbutyl acetate, benzaldehyde, ethyl hexanoate, hexyl acetate, limonene and furfural. The slight variations observed in the volatile profile were not enough to provoke significant changes in the characteristic aroma and flavor of the passion fruit juice.