969 resultados para moving object classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical analyses (correspondence analysis, ascending hierarchical classification, and cladistics) were done with morphological characters of adult phlebotomine sand flies. The resulting classification largely confirms that of classical taxonomy for supra-specific groups from the Old World, though the positions of some groups are adjusted. The taxa Spelaeophlebotomus Theodor 1948, Idiophlebotomus Quate & Fairchild 1961, Australophlebotomus Theodor 1948 and Chinius Leng 1987 are notably distinct from other Old World groups, particularly from the genus Phlebotomus Rondani & Berté 1840. Spelaeomyia Theodor 1948 and, in particular, Parvidens Theodor & Mesghali 1964 are clearly separate from Sergentomyia França & Parrot 1920.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

В статье будут рассмотрены два исследования русского и советского лингвиста Е.Д. Поливанова, посвященные фонетике «интеллигентского языка». В начале 1930-ч гг. Поливанов выдвинул новаторскую теорию языка, основанную на изучении социолектов и групповых диалектов русского языка современности. Язык интеллигенции - один из излюбленных предметов исследований лингвиста. Поливанов доказывает, что изменениям подвержен не только словарный запас, но и фонетика, и приводит конкретные примеры фонетических изменений, вызванных революцией.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foyle HSS Trust's Evaluation of community nursing project. Part of the Department's redesign of community nursing project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: PFAPA syndrome is characterized by periodic fever, associated with pharyngitis, cervical adenitis and/or aphthous stomatitis and belongs to the auto-inflammatory diseases. Diagnostic criteria are based on clinical features and the exclusion of other periodic fever syndromes. An analysis of a large cohort of patients has shown weaknesses for these criteria and there is a lack of international consensus. An International Conference was held in Morges in November 2008 to propose a new set of classification criteria based on a consensus among experts in the field.OBJECTIVE: We aimed to verify the applicability of the new set of classification criteria.PATIENTS & METHODS: 80 patients diagnosed with PFAPA syndrome from 3 centers (Genoa, Lausanne and Geneva) for pediatric rheumatology were included in the study. A detailed description of the clinical and laboratory features was obtained. The new classification criteria and the actual diagnostic criteria were applied to the patients.RESULTS: Only 40/80 patients (50%) fulfilled all criteria of the new classification. 31 patients were excluded because they didn't meet one of the 7 diagnostic criteria, 7 because of 2 criteria, and one because of 3 criteria. When we applied the current criteria to the same patients, 11/80 patients (13.7%) needed to be excluded. 8/80 patients (10%) were excluded from both sets. Exclusion was related only to some of the criteria. Number of patients for each not fulfilled criterion (new set of criteria/actual criteria): age (1/6), symptoms between episodes (2/2), delayed growth (4/1), main symptoms (21/0), periodicity, length of fever, interval between episodes, and length of disease (20/0). The application of some of the new criteria was not easy, as they were both very restrictive and needed precise information from the patients.CONCLUSION: Our work has shown that the new set of classification criteria can be applied to patients suspected for PFAPA syndrome, but it seems to be more restrictive than the actual diagnostic criteria. A further work of validation needs to be done in order to determine if this new set of classification criteria allow a good discrimination between PFAPA patients and other causes of recurrent fever syndromes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This booklet provides advice about the stages involved in helping babies make the move from milk only to joining in family meals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of support vector machine classification (SVM) to combined information from magnetic resonance imaging (MRI) and [F18]fluorodeoxyglucose positron emission tomography (FDG-PET) has been shown to improve detection and differentiation of Alzheimer's disease dementia (AD) and frontotemporal lobar degeneration. To validate this approach for the most frequent dementia syndrome AD, and to test its applicability to multicenter data, we randomly extracted FDG-PET and MRI data of 28 AD patients and 28 healthy control subjects from the database provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) and compared them to data of 21 patients with AD and 13 control subjects from our own Leipzig cohort. SVM classification using combined volume-of-interest information from FDG-PET and MRI based on comprehensive quantitative meta-analyses investigating dementia syndromes revealed a higher discrimination accuracy in comparison to single modality classification. For the ADNI dataset accuracy rates of up to 88% and for the Leipzig cohort of up to 100% were obtained. Classifiers trained on the ADNI data discriminated the Leipzig cohorts with an accuracy of 91%. In conclusion, our results suggest SVM classification based on quantitative meta-analyses of multicenter data as a valid method for individual AD diagnosis. Furthermore, combining imaging information from MRI and FDG-PET might substantially improve the accuracy of AD diagnosis.