923 resultados para model selection in binary regression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundary-layers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Analyses of species association have major implications for selecting indicators for freshwater biomonitoring and conservation, because they allow for the elimination of redundant information and focus on taxa that can be easily handled and identified. These analyses are particularly relevant in the debate about using speciose groups (such as the Chironomidae) as indicators in the tropics, because they require difficult and time-consuming analysis, and their responses to environmental gradients, including anthropogenic stressors, are poorly known. 2. Our objective was to show whether chironomid assemblages in Neotropical streams include clear associations of taxa and, if so, how well these associations could be explained by a set of models containing information from different spatial scales. For this, we formulated a priori models that allowed for the influence of local, landscape and spatial factors on chironomid taxon associations (CTA). These models represented biological hypotheses capable of explaining associations between chironomid taxa. For instance, CTA could be best explained by local variables (e.g. pH, conductivity and water temperature) or by processes acting at wider landscape scales (e.g. percentage of forest cover). 3. Biological data were taken from 61 streams in Southeastern Brazil, 47 of which were in well-preserved regions, and 14 of which drained areas severely affected by anthropogenic activities. We adopted a model selection procedure using Akaike`s information criterion to determine the most parsimonious models for explaining CTA. 4. Applying Kendall`s coefficient of concordance, seven genera (Tanytarsus/Caladomyia, Ablabesmyia, Parametriocnemus, Pentaneura, Nanocladius, Polypedilum and Rheotanytarsus) were identified as associated taxa. The best-supported model explained 42.6% of the total variance in the abundance of associated taxa. This model combined local and landscape environmental filters and spatial variables (which were derived from eigenfunction analysis). However, the model with local filters and spatial variables also had a good chance of being selected as the best model. 5. Standardised partial regression coefficients of local and landscape filters, including spatial variables, derived from model averaging allowed an estimation of which variables were best correlated with the abundance of associated taxa. In general, the abundance of the associated genera tended to be lower in streams characterised by a high percentage of forest cover (landscape scale), lower proportion of muddy substrata and high values of pH and conductivity (local scale). 6. Overall, our main result adds to the increasing number of studies that have indicated the importance of local and landscape variables, as well as the spatial relationships among sampling sites, for explaining aquatic insect community patterns in streams. Furthermore, our findings open new possibilities for the elimination of redundant data in the assessment of anthropogenic impacts on tropical streams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention is a critical mechanism for visual scene analysis. By means of attention, it is possible to break down the analysis of a complex scene to the analysis of its parts through a selection process. Empirical studies demonstrate that attentional selection is conducted on visual objects as a whole. We present a neurocomputational model of object-based selection in the framework of oscillatory correlation. By segmenting an input scene and integrating the segments with their conspicuity obtained from a saliency map, the model selects salient objects rather than salient locations. The proposed system is composed of three modules: a saliency map providing saliency values of image locations, image segmentation for breaking the input scene into a set of objects, and object selection which allows one of the objects of the scene to be selected at a time. This object selection system has been applied to real gray-level and color images and the simulation results show the effectiveness of the system. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the Wald, score, and likelihood ratio asymptotic test statistics, we analyze a multivariate null intercept errors-in-variables regression model, where the explanatory and the response variables are subject to measurement errors, and a possible structure of dependency between the measurements taken within the same individual are incorporated, representing a longitudinal structure. This model was proposed by Aoki et al. (2003b) and analyzed under the bayesian approach. In this article, considering the classical approach, we analyze asymptotic test statistics and present a simulation study to compare the behavior of the three test statistics for different sample sizes, parameter values and nominal levels of the test. Also, closed form expressions for the score function and the Fisher information matrix are presented. We consider two real numerical illustrations, the odontological data set from Hadgu and Koch (1999), and a quality control data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with asymptotic results on a multivariate ultrastructural errors-in-variables regression model with equation errors Sufficient conditions for attaining consistent estimators for model parameters are presented Asymptotic distributions for the line regression estimators are derived Applications to the elliptical class of distributions with two error assumptions are presented The model generalizes previous results aimed at univariate scenarios (C) 2010 Elsevier Inc All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric ICC treats both correct and incorrect answers symmetrically, which results in a logical contradiction in ordering examinees on the ability scale. A data set corresponding to a mathematical test applied in Peruvian public schools is analyzed, where comparisons with other parametric IRT models also are conducted. Several model comparison criteria are discussed and implemented. The main conclusion is that the LPE and RLPE IRT models are easy to implement and seem to provide the best fit to the data set considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this work is to study the behaviour of Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-32] adjusted likelihood ratio statistic in testing simple hypothesis in a new class of regression models proposed here. The proposed class of regression models considers Dirichlet distributed observations, and the parameters that index the Dirichlet distributions are related to covariates and unknown regression coefficients. This class is useful for modelling data consisting of multivariate positive observations summing to one and generalizes the beta regression model described in Vasconcellos and Cribari-Neto [Vasconcellos, K.L.P., Cribari-Neto, F., 2005. Improved maximum likelihood estimation in a new class of beta regression models. Brazilian journal of Probability and Statistics 19,13-31]. We show that, for our model, Skovgaard`s adjusted likelihood ratio statistics have a simple compact form that can be easily implemented in standard statistical software. The adjusted statistic is approximately chi-squared distributed with a high degree of accuracy. Some numerical simulations show that the modified test is more reliable in finite samples than the usual likelihood ratio procedure. An empirical application is also presented and discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese é composta por três ensaios sobre o mercado de crédito e as instituições que regem bancarrota corporativa. No capítulo um, trazemos evidências que questionam a ideia de que maiores níveis de proteção ao credor sempre promovem desenvolvimento do mercado de crédito. Desde a publicação dos artigos seminais de La Porta et al (1997,1998), a métrica de proteção ao credor que os autores propuseram -- o índice de proteção ao credor -- tem sido amplamente utilizada na literatura de Law and Finance como variável explicativa em modelos de regressão linear em forma reduzida para determinar a correlação entre proteção ao credor e desenvolvimento do mercado de crédito. Neste artigo, exploramos alguns problemas com essa abordagem. Do ponto de vista teórico, essa abordagem geralmente supõe uma relação monotônica entre proteção ao credor e expansão do crédito. Nós apresentamos um modelo teórico para um mercado de crédito com seleção adversa em que um nível intermediário de proteção ao credor é capaz de implementar equilíbrios first best. Este resultado está de acordo com diversos outros artigos teóricos, tanto em equilíbrio geral quanto em equilíbrio parcial. Do ponto de vista empírico, tiramos proveito das reformas realizadas por alguns países durante as décadas de 1990 e 2000 para implementar uma estratégia inspirada na literatura de treatment effects e estimar o efeito sobre o valor de mercado e sobre a dívida de: i) permitir automatic stay a firmas em recuperação; e ii) conceder aos credores o direito de afastar os administradores. Os resultados que obtivemos apontam para um impacto positivo de automatic stay sobre todas as variáveis que dependem do valor de mercado da firma. Não encontramos efeito sobre dívida, e não encontramos efeitos significativos do direito de afastar administradores sobre valor de mercado ou dívida. O capítulo dois avalia as consequências empíricas de uma reforma na lei de falências sobre um mercado de crédito pouco desenvolvido. No início de 2005, o Congresso Nacional brasileiro aprovou uma nova lei de falências, a lei 11.101/05. Usando dados de firmas brasileiras e não-brasileiras, nós estimamos, usando dois modelos diferentes, o efeito da reforma falimentar sobre variáveis contratuais e não-contratuais de dívida. Ambos os modelos produzem resultados similares. Encontramos um aumento no volume total de dívida e na dívida de longo prazo, e uma redução no custo de dívida. Não encontramos efeitos significativos sobre a estrutura de propriedade da dívida. No capítulo três, desenvolvemos um modelo estimável de equilíbrio em search direcionado aplicado ao mercado de crédito, modelo este que pode ser usado para realizar avaliações ex ante de mudanças institucionais que afetem o crédito (como reformas em leis de falência). A literatura em economia há muito reconhece uma relação causal entre instituições (como leis e regulações) e desenvolvimento dos mercados financeiros. Essa conclusão qualitativa é amplamente reconhecida, mas há pouca evidência de sua importância quantitativa. Com o nosso modelo, é possível estimar como contratos de dívida mudam em resposta a mudanças nos parâmetros que descrevem as instituições da economia. Também é possível estimar o impacto sobre investimentos realizados pelas firmas, bem como caracterizar a distribuição do tamanho, idade e produtividade das firmas antes e depois da mudança institucional. Como ilustração, realizamos um exercício empírico em que usamos dados de firmas brasileiras para simular o impacto de variações na taxa de recuperação de créditos sobre os valores médios e totais de dívida e capital das firmas. Encontramos dívida crescente e capital quase sempre também crescente na taxa de recuperação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 15,901 scrotal circumference (SC) records from 5300 Nelore bulls, ranging from 229 to 560 days of age, were used with the objective of estimating (co)variance functions for SC, using random regression models. Models included the fixed effects of contemporary group and age of dam at calving as covariable (linear and quadratic effects). To model the population mean trend, a third order Legendre polynomial on animal age was utilized. The direct additive genetic and animal permanent environmental random effects were modeled by Legendre polynomials on animal age, with orders of fit ranging from 1 to 5. Residual variances were modeled considering 1 (homogeneity of variance) or 4 age classes. Results obtained with the random regression models were compared to multi-trait analysis. (Co)variance estimates using multi-trait and random regression models were similar. The model considering a third- and fifth-order Legendre polynomials for additive genetic and animal permanent environmental effects, respectively, was the most adequate to model changes in variance of SC with age. Heritability estimates for SC ranged from 0.24 (229 days of age) to 0.47 (300 days of age), remained almost constant until 500 days of age (0.52), decreasing thereafter (0.44). In general, the genetic correlations between measures of scrotal circumference obtained from 229 to 560 days of age decreased with increasing distance between ages. For genetic evaluation scrotal circumference could be measured between 400 and 500 days of age. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)