922 resultados para mineral particle size


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emulsões estabilizadas por 'beta'-caseína e sódio caseinato tiveram suas propriedades reológicas investigadas em função da natureza da fase oleosa, da força iônica e do pH. Fases oleosas de características estruturais distintas, a saber, decano e óleos vegetais de alto teor triglicerídico, foram ensaiadas. A emulsificação dos sistemas contendo decano foi significativamente mais efetiva do que aquela das amostras contendo triglicérides. Efeitos de pH e força iônica mostraram-se relativamente pouco importantes sobre a capacidade emulsificante da proteína. As propriedades reológicas foram marcadamente distintas em cada caso, com estruturas de caráter sólido (G' G") sendo produzidas com decano, diferentemente do que foi observado para amostras contendo triglicérides, nas quais a viscoelasticidade não foi nem mesmo aparente. A relevância de aspectos espaciais da estrutura da fase oleosa no desenvolvimento do caráter viscoelástico é discutida. Propõe-se que os fatores responsáveis pelo comportamento distinto observado residam possivelmente na interface gotícula/meio dispersante, inacessível por microscopia óptica, e guardam pouca relação com tamanho ou forma da gotícula.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Use of lipid nanoemulsions as carriers of drugs for therapeutic or diagnostic purposes has been increasingly studied. Here, it was tested whether modifications of core particle constitution could affect the characteristics and biologic properties of lipid nanoemulsions. Methods: Three nanoemulsions were prepared using cholesteryl oleate, cholesteryl stearate, or cholesteryl linoleate as main core constituents. Particle size, stability, pH, peroxidation of the nanoemulsions, and cell survival and uptake by different cell lines were evaluated. Results: It was shown that cholesteryl stearate nanoemulsions had the greatest particle size and all three nanoemulsions were stable during the 237-day observation period. The pH of the three nanoemulsion preparations tended to decrease over time, but the decrease in pH of cholesteryl stearate was smaller than that of cholesteryl oleate and cholesteryl linoleate. Lipoperoxidation was greater in cholesteryl linoleate than in cholesteryl oleate and cholesteryl stearate. After four hours' incubation of human umbilical vein endothelial cells (HUVEC) with nanoemulsions, peroxidation was minimal in the presence of cholesteryl oleate and more pronounced with cholesteryl linoleate and cholesteryl stearate. In contrast, macrophage incubates showed the highest peroxidation rates with cholesteryl oleate. Cholesteryl linoleate induced the highest cell peroxidation rates, except in macrophages. Uptake of cholesteryl oleate nanoemulsion by HUVEC and fibroblasts was greater than that of cholesteryl linoleate and cholesteryl stearate. Uptake of the three nanoemulsions by monocytes was equal. Uptake of cholesteryl oleate and cholesteryl linoleate by macrophages was negligible, but macrophage uptake of cholesteryl stearate was higher. In H292 tumor cells, cholesteryl oleate showed the highest uptakes. HUVEC showed higher survival rates when incubated with cholesteryl stearate and smaller survival with cholesteryl linoleate. H292 survival was greater with cholesteryl stearate. Conclusion: Although all three nanoemulsion types were stable for a long period, considerable differences were observed in size, oxidation status, and cell survival and nanoemulsion uptake in all tested cell lines. Those differences may be helpful in protocol planning and interpretation of data from experiments with lipid nanoemulsions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Subclinical hypothyroidism (SCH) has been associated with atherosclerosis, but the abnormalities in plasma lipids that can contribute to atherogenesis are not prominent. The aim of this study was to test the hypothesis that patients with normocholesterolemic, normotriglyceridemic SCH display abnormalities in plasma lipid metabolism not detected in routine laboratory tests including abnormalities in the intravascular metabolism of triglyceride-rich lipoproteins, lipid transfers to high-density lipoprotein (HDL), and paraoxonase 1 activity. The impact of levothyroxine (LT4) treatment and euthyroidism in these parameters was also tested. Methods: The study included 12 SCH women and 10 matched controls. Plasma kinetics of an artificial triglyceride-rich emulsion labeled with radioactive triglycerides and cholesteryl esters as well as in vitro transfer of four lipids from an artificial donor nanoemulsion to HDL were determined at baseline in both groups and after 4 months of euthyroidism in the SCH group. Results: Fractional clearance rates of triglycerides (SCH 0.035 +/- 0.016 min(-1), controls 0.029 +/- 0.013 min(-1), p=0.336) and cholesteryl esters (SCH 0.009 +/- 0.007 min(-1), controls 0.009 +/- 0.009 min(-1), p=0.906) were equal in SCH and controls and were unchanged by LT4 treatment and euthyroidism in patients with SCH, suggesting that lipolysis and remnant removal of triglyceride-rich lipoproteins were normal. Transfer of triglycerides to HDL (SCH 3.6 +/- 0.48%, controls 4.7 +/- 0.63%, p=0.001) and phospholipids (SCH 16.2 +/- 3.58%, controls 21.2 +/- 3.32%, p=0.004) was reduced when compared with controls. After LT4 treatment, transfers increased and achieved normal values. Transfer of free and esterified cholesterol to HDL, HDL particle size, and paraoxonase 1 activity were similar to controls and were unchanged by treatment. Conclusions: Although intravascular metabolism of triglyceride-rich lipoproteins was normal, patients with SCH showed abnormalities in HDL metabolism that were reversed by LT4 treatment and achievement of euthyroidism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25-2.5 mu m were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25-0.45 mu m in diameter, were in general dominated by deposition in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. Transfer velocities within this particle size range were observed to increase linearly with increasing friction velocity and increasing particle diameter. In the diameter range 0.5-2.5 mu m, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net upward fluxes were observed. However, in wind sectors associated with higher anthropogenic influence, deposition fluxes dominated. The net upward fluxes were interpreted as a result of primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The net emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and were best correlated with horizontal wind speed according to the equation log(10)F = 0.48.U + 2.21 where F is the net emission number flux of 0.5-2.5 mu m particles [m(-2) s(-1)] and U is the horizontal wind speed [ms(-1)] at the top of the tower.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the magnetic separation approach to facilitate the recovery of gold nanoparticle (AuNP) catalysts. The use of magnetically recoverable supports for the immobilization of AuNPs instead of traditional oxides, polymers or carbon based solids guarantees facile, clean, fast and efficient separation of the catalyst at the end of the reaction cycle. Magnetic separation can be considered an environmentally benign separation approach, since it minimizes the use of auxiliary substances and energy for achieving catalyst recovery. The catalyst preparation is based on the immobilization of Au(3+) on the surface of core-shell silica-coated magnetite nanoparticles, followed by metal reduction using two different methods. AuNPs were prepared by thermal reduction in air and by hydrogen reduction at mild temperature. Interestingly, the mean particle size of the supported AuNPs was similar (ca. 5.9 nm), but the polydispersity of the samples is quite different. The catalytic activity of both catalysts in the aerobic oxidation of alcohols was investigated and a distinct selectivity for benzyl alcohol oxidation was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of slow release fertilizer has become a new trend to save fertilizer consumption and to minimize environmental pollution. Due to its polymeric cationic, biodegradable, bioabsorbable, and bactericidal characteristics, chitosan (CS) nanoparticle is an interesting material for use in controlled release systems. However, there are no attempts to explore the potential of chitosan nanoparticles as controlled release for NPK fertilizers. In this work chitosan nanoparticles were obtained by polymerizing methacrylic acid for the incorporation of NPK fertilizers. The interaction and stability of chitosan nanoparticle suspensions containing nitrogen (N), phosphorus (P) and potassium (K) were evaluated by FTIR spectroscopy, particle size analysis and zeta-potential. The FTIR results indicated the existence of electrostatic interactions between chitosan nanoparticles and the elements N, P and K. The stability of the CS-PMAA colloidal suspension was higher with the addition of nitrogen and potassium than with the addition of phosphorus, due to the higher anion charge from the calcium phosphate than the anion charges from the potassium chloride and urea. The mean diameter increase of the CS-PMAA nanoparticles in suspension with the addition of different compounds indicated that the elements are being aggregated on the surface of the chitosan nanoparticles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the characterization of poly(aniline) (PANI) and poly(methyl methacrylate) (PMMA) coatings obtained by mixing PANI with PMMA aqueous dispersions (latex particles). These dispersions were characterized by using dynamic light scattering for sizing, zeta-potential analysis and thermal analysis. PMMA and PANI/PMMA dispersions show negative charged particles with zeta potential greater than |40| mV, a zeta-average diameter of 64 nm for pure PMMA and a bi-modal particle-size distribution centered at 45 and 120 nm for a mixture with 25% w/w of PANI. Films obtained by casting were characterized by using scanning electron microscopy and they show a conductivity increase upon PANI content reaching a value of 1 mS cm(-1) for a film with 25% w/w of PANI. In addition, Raman spectroscopy have shown the presence of the conducting form of PANI in the films and cyclic voltammetry experiments corroborated that they are electroactive in both acid and neutral solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 x 10(6) Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (D-h) of 27 +/- 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller D-h of 10 +/- 1 nm. The decrease in D-h suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DILS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25 degrees C and 38 degrees C. At 25 degrees C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38 degrees C is faster than that at 25 degrees C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25 degrees C. Autoxiclation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A methodology of identification and characterization of coherent structures mostly known as clusters is applied to hydrodynamic results of numerical simulation generated for the riser of a circulating fluidized bed. The numerical simulation is performed using the MICEFLOW code, which includes the two-fluids IIT`s hydrodynamic model B. The methodology for cluster characterization that is used is based in the determination of four characteristics, related to average life time, average volumetric fraction of solid, existing time fraction and frequency of occurrence. The identification of clusters is performed by applying a criterion related to the time average value of the volumetric solid fraction. A qualitative rather than quantitative analysis is performed mainly owing to the unavailability of operational data used in the considered experiments. Concerning qualitative analysis, the simulation results are in good agreement with literature. Some quantitative comparisons between predictions and experiment were also presented to emphasize the capability of the modeling procedure regarding the analysis of macroscopic scale coherent structures. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The measurement of the charge distribution in laboratory generated aerosols particles was carried out. Four cases of electrostatic charge acquisition by aerosol particles were evaluated. In two of these cases. the charges acquired by the particles were naturally derived from the aerosol generation procedure itself, without using any additional charging method. Ill the other two cases, a corona charger and an impact charger were utilized as Supplementary methods for charge generation. Two types of aerosol generators were used in the dispersion of particles in the gas Stream: the vibrating orifice generator TSI model 3450 and the rotating plate generator TSI model 3433. In the vibrating orifice generator. a Solution of methylene blue Was used and the generated particles were mono-dispersed. Different mono-aerosols were generated with particle diameters varying from 6.0 x 10(-6) m to 1.4 x 10(-5) m. In the rotating plate generator, a poly-dispersed phosphate rock concentrate with Stokes mean diameter of 1.30 x 10(-6) m and size range between 1.5 x 10(-7) m and 8.0 x 10(-6) m Was utilized as powder material in all tests. In the tests performed with the mono-dispersed particles. the median charges of the particles varied between -3.0 x 10-(16) C and -5.0 x 10(-18) degrees C and a weak dependence between particle size and charge was observed. The particles were predominantly negatively charged. In the tests with the poly-dispersed particles the median charges varied fairly linearly with the particle diameter and were negative. The order of magnitude of the results obtained is in accordance with data reported in the literature. The charge distribution, in this case, was wider, so that an appreciable amount of particles were positively charged. The relative spread of the distribution varied with the charging method. It was also noticed that the corona charger acted very effectively in charging the particles. (C) 2008 Elsevier BY. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An extensive set of experiments was performed on a semi-solid A356 alloy in order to assess its flow behavior, mechanical properties, microstructural evolution and porosity level. Three different microstructural conditioning techniques (raw material preparation) were employed: deformation recrystallization, magnetohydrodynamic stirring and low temperature pouring. Measurement of microstructural parameters such as Al-alpha particle size, shape factor, contiguity and entrapped liquid showed a relative equivalency among the various conditioning techniques. It was found that the strongest influence on semi-solid slurry fluidity is exerted by the mould temperature. Tensile properties and porosity levels were measured on a demonstration part produced with different slurry ingate velocities. Results showed similar strength levels among all thixocast samples, a strong correlation between elongation and pore volume fraction and porosity levels much lower than the typical figure for permanent mould or die cast Al-Si alloys. Finally, thermomechanical fatigue tests results were much more favorable to the semi-solid material when compared with the conventionally cast alloy, a result attributed to lower porosity, spheroidal shape of the Al-alpha phase, and refined Si eutectic particles. alpha 2007 Elsevier B.V. All rights reserved.