547 resultados para metadynamic recrystallization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectrum characteristic of the EMC ranges from eclogites (containing omphacite and/or jadeite, garnet, phengite, glaucophane, zoisite, chloritoid, rutile) to phengite schists, calcschists, and marbles, as well as a variety of orthogneisses. Despite the intense polyphase deformation and HP-metamorphic recrystallization, it is possible in some locations to recognize pre-Alpine characteristics in some of the protoliths. For instance, two types of felsic orthogneiss can be distinguished in the Aosta Valley, one derived from Permian granitoids (with local preservation of intrusive contacts, magmatic inclusions, leucocratic veins and other magmatic structures; Stop 3), the other derived from pre-Variscan leuco-monzogranite, such as the building stone mined at the “Argentera” quarry near Settimo Vittone / Montestrutto (Stop 2; so-called “Verde Argento” contains jadeite, phengite, K-feldspar, quartz). Polycyclic and more rarely monocyclic metasediments contain evidence of a complex Alpine PTDt-evolution, locally including relics of their prograde history from blueschist, one or more stages at eclogite facies. Recent petrochronological studies have dated this HP-evolution of the Sesia Zone in some detail. In the area visited, clear evidence of HP-cycling has been identified in one km-size tectonic slice (Stop 1), but not in adjacent parts of the EMC, indicating “yo-yo tectonics”. Partial retrogression and attendant ductile to brittle deformation of the HP-rocks is evident in one of the outcrops (Stop 4). Apart from the four localities in the Sesia Zone, a final outcrop introduces HP-rocks of the adjacent Piemonte oceanic unit, specifically calc-schists and ophiolite members of the “Zermatt-Saas” zone. The hilltop outcrop (Stop 5) displays foliated antigorite schist with peridotite relics (clinopyroxene, spinel) containing lenses derived from doleritic dykes. These fine-grained metarodingites and the folded veins containing Mg-chlorite and titanoclinohumite within serpentinite once again indicate equilibration under low-temperature eclogite facies conditions. However, these units reached that HP stage more than 20 Ma after the youngest eclogite facies imprint recognized in the Sesia Zone. Despite nearly half a century of intense study in the Sesia Zone, the complex assembly of its HP-terranes and their relation to more external parts of the Western Alps remains incompletely understood. This field guide merely introduces a few of the classic outcrops and discusses some of the critical evidence they contain, but it could not incorporate details on each stage of the evolution recognized so far.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice–bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Barchi-Kol terrain is a classic locality of ultrahigh-pressure (UHP) metamorphism within the Kokchetav metamorphic belt. We provide a detailed and systematic characterization of four metasedimentary samples using dominant mineral assemblages, mineral inclusions in zircon and monazite, garnet zonation with respect to major and trace elements, and Zr-in-rutile and Ti-in-zircon temperatures. A typical diamond-bearing gneiss records peak conditions of 49 ± 4 kbar and 950–1000 °C. Near isothermal decompression of this rock resulted in the breakdown of phengite associated with a pervasive recrystallization of the rock. The same terrain also contains mica schists that experienced peak conditions close to those of the diamond-bearing rocks, but they were exhumed along a cooler path where phengite remained stable. In these rocks, major and trace element zoning in garnet has been completely equilibrated. A layered gneiss was metamorphosed at UHP conditions in the coesite field, but did not reach diamond-facies conditions (peak conditions: 30 kbar and 800–900 °C). In this sample, garnet records retrograde zonation in major elements and also retains prograde zoning in trace elements. A garnet-kyanite-micaschist that reached significantly lower pressures (24 ± 2 kbar, 710 ± 20 °C) contains garnet with major and trace element zoning. The diverse garnet zoning in samples that experienced different metamorphic conditions allows to establish that diffusional equilibration of rare earth element in garnet likely occurs at ~900–950 °C. Different metamorphic conditions in the four investigated samples are also documented in zircon trace element zonation and mineral inclusions in zircon and monazite. U-Pb geochronology of metamorphic zircon and monazite domains demonstrates that prograde (528–521 Ma), peak (528–522 Ma), and peak to retrograde metamorphism (503–532 Ma) occurred over a relatively short time interval that is indistinguishable from metamorphism of other UHP rocks within the Kokchetav metamorphic belt. Therefore, the assembly of rocks with contrasting P-T trajectories must have occurred in a single subduction-exhumation cycle, providing a snapshot of the thermal structure of a subducted continental margin prior to collision. The rocks were initially buried along a low geothermal gradient. At 20–25 kbar they underwent near isobaric heating of 200 °C, which was followed by continued burial along a low geothermal gradient. Such a step-wise geotherm is in good agreement with predictions from subduction zone thermal models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed record of the strontium-87 to strontium-86 ratio in seawater during the last 100 million years was determined by measuring this ratio in 137 well-preserved and well-dated fossil foraminifera samples. Sample preservation was evaluated from scanning electron microscopy studies, measured strontium-calcium ratios, and pore water strontium isotope ratios. The evolution of the strontium isotopic ratio in seawater offers a means to evaluate long-term changes in the global strontium isotope mass balance. Results show that the marine strontium isotope composition can be used for correlating and dating well-preserved authigenic marine sediments throughout much of the Cenozoic to a precision of +/- 1 million years. The strontium-87 to strontium-86 ratio in seawater increased sharply across the Cretaceous/Tertiary boundary, but this feature is not readily explained as strontium input from a bolide impact on land.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abundant serpentinite seamounts are found along the outer high of the Mariana forearc at the top of the inner slope of the trench. One of them, Conical Seamount, was drilled at Sites 778, 779, and 780 during Leg 125. The rocks recovered at Holes 779A and 780C, respectively, on the flanks and at the summit of the seamount, include moderately serpentinized depleted harzburgites and some dunites. These rocks exhibit evidence of resorption of the orthopyroxene, when present, and the local presence of very calcic-rich diopside in veins oblique to the main high-temperature foliation of the rock. The peridotites, initially well-foliated with locally poikiloblastic textures, show overprints of a two-stage deformation history: (1) a high-temperature (>1000°C), low-stress (0.02 GPa), homogeneous deformation that has led to the present Porphyroclastic textures displayed by the rocks and (2) heterogeneous ductile shearing at a much higher stress (0.05 GPa). This heterogeneous shearing probably describes a single tectonic event because it began at high temperatures, producing dynamic recrystallization of olivine in the shear zone, and ended at low temperatures in the stability field of chlorite and serpentine. In a few samples, olivine shows evidence of quasi-hydrostatic recrystallization at a very high temperature. Here, we propose that this recrystallization was related to fluid/magma percolation, a process that can also account for the resorption of the orthopyroxene and for the late crystallization of diopside veins in the rock. The impregnation by fluid or magma, development of the main high-temperature, low-stress deformation, and subsequent migration recrystallization of olivine probably occurred in a mantle fragment involved in the arc formation. In addition, this mantle has preserved structures that may have formed earlier in the oceanic lithosphere upon which the arc formed. Heterogeneous ductile shear zones in the peridotites may have developed during uplift. The "cold" deformation may have taken place during diapiric rise of hot mantle that underwent subsequent serpentinization or gliding along normal faults associated with the extension of the eastern margin of the forearc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on newly discovered mud volcanoes located at about 4500 m water depth 90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, Delta18O, DeltaD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interstitial waters from several sites drilled during Leg 58 have been analyzed for major constituents. Data for Sites 442, 443, and 444 in Shikoku Basin indicate that only small changes occur in the chemical composition. We did not note any influence on the interstitial water chemistry resulting from reactions taking place in the underlying basalts. Site 445 data indicate that reactions must occur in the sediment column, leading to decreases in dissolved magnesium and increases in dissolved calcium. In addition, a source of dissolved calcium appears in the underlying basalts. At Site 446, changes appear in dissolved-calcium and -magnesium concentrations, resulting mainly from alteration reactions in the basalts. Dissolved potassium has its main sink in deeper-lying sediments or basalts. Changes in dissolved strontium at Sites 445 and 446 can be explained in terms of carbonate recrystallization. At all sites, changes in dissolved manganese and lithium appear to be related to the presence of biogenic silica in the sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cool tropical sea surface temperatures (SSTs) are reported for warm Paleogene greenhouse climates based on the d18O of planktonic foraminiferal tests. These results are difficult to reconcile with models of greenhouse gas-forced climate. It has been suggested that this "cool tropics paradox" arises from postdepositional alteration of foraminiferal calcite, yielding erroneously high d18O values. Recrystallization of foraminiferal tests is cryptic and difficult to quantify, and the compilation of robust d18O records from moderately altered material remains challenging. Scanning electron microscopy of planktonic foraminiferal chamber-wall cross sections reveals that the basal area of muricae, pustular outgrowths on the chamber walls of species belonging to the genus Morozovella, contain no mural pores and may be less susceptible to postdepositional alteration. We analyzed the d18O in muricae bases of morozovellids from the central Pacific (Ocean Drilling Program Site 865) by ion microprobe using 10 ?m pits with an analytical reproducibility of ±0.34 per mil (2 standard deviations). In situ measurements of d18O in these domains yield consistently lower values than those published for conventional multispecimen analyses. Assuming that the original d18O is largely preserved in the basal areas of muricae, this new d18O record indicates Early Paleogene (~49-56 Ma) tropical SSTs in the central Pacific were 4°-8°C higher than inferred from the previously published d18O record and that SSTs reached at least ~33°C during the Paleocene-Eocene thermal maximum. This study demonstrates the utility of ion microprobe analysis for generating more reliable paleoclimate records from moderately altered foraminiferal tests preserved in deep-sea sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leg 83 of the Deep Sea Drilling Project has deepened Hole 504B to over 1 km into basement, 1350 m below the seafloor (BSF). The hole previously extended through 274.5 m of sediment and 561.5 m of pillow basalts altered at low temperature (< 100°C), to 836 m BSF. Leg 83 drilling penetrated an additional 10 m of pillows, a 209-m transition zone, and 295 m into a sheeted dike complex. Leg 83 basalts (836-1350 m BSF) generally contain superimposed greenschist and zeolite-facies mineral parageneses. Alteration of pillows and dikes from 836 to 898 m BSF occurred under reducing conditions at low water/rock ratios, and at temperatures probably greater than 100°C. Evolution of fluid composition resulted in the formation of (1) clay minerals, followed by (2) zeolites, anhydrite, and calcite. Alteration of basalts in the transition zone and dike sections (898-1350 m BSF) occurred in three basic stages, defined by the opening of fractures and the formation of characteristic secondary minerals. (1) Chlorite, actinolite, pyrite, albite, sphene, and minor quartz formed in veins and host basalts from partially reacted seawater (Mg-bearing, locally metal-and Si-enriched) at temperatures of at least 200-250°C. (2) Quartz, epidote, and sulfides formed in veins at temperatures of up to 380°C, from more evolved (Mg-depleted, metal-, Si-, and 18O-enriched) fluids. (3) The last stage is characterized by zeolite formation: (a) analcite and stilbite formed locally, possibly at temperatures less than 200°C followed by (b) formation of laumontite, heulàndite, scolecite, calcite, and prehnite from solutions depleted in Mg and enriched in Ca and 18O, at temperatures of up to 250°C. The presence of small amounts of anhydrite locally may be due to ingress of relatively unaltered seawater into the system during Stage 3. Alteration was controlled by the permeability of the crust and is characterized by generally incomplete recrystallization and replacement reactions among secondary minerals. Secondary mineralogy in the host basalts is strongly controlled by primary mineralogy. The alteration of Leg 83 basalts can be interpreted in terms of an evolving hydrothermal system, with (a) changes in solution composition because of reaction of seawater fluids with basalts at high temperatures; (b) variations in permeability caused by several stages of sealing and reopening of cracks; and (c) a general cooling of the system, caused either by the cooling of a magma chamber beneath the spreading center and/or the movement of the crust away from the heat source. The relationship of the high-temperature alteration in the transition zone and dike sections to the low-temperature alteration in the overlying pillow section remains uncertain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sedimentary sequence documenting the early history of the proto-Indian Ocean was drilled at Site 761 on the Wombat Plateau, northwest Australia. Directly above the post-rift unconformity, two lithologic units were recovered which reflect deposition in incipient oceanic environments. The lower unit, composed of sandstone, contains abundant belemnites and a few lenses composed of low-diversity coccolith assemblages. The second unit, composed of chalk, contains abundant calcispheres, thoracospheres, low-diversity coccolith assemblages, and a few radiolarians. Belemnites and organisms that produced calcispheres and thoracospheres are thought to be opportunistic. Their abundance, and the absence of a normal marine fauna and flora, reflects an unstable early ocean environment. Stable oxygen and carbon isotopic data for the two units fall into almost separate fields. Heavy delta18O values for the belemnites indicate that they have not been affected by recrystallization. Instead, these isotopic values are thought to indicate either the deep, cool habitat of the belemnites or strong vital effects. A bulk chalk delta18O value from the belemnite sand is 3 to 4 parts per mil lighter than the belemnite delta18O values, possibly because it is largely composed of coccoliths which inhabited warmer surface waters. Light delta13C values for bulk calcisphere-bearing nannofossil chalk samples are thought to be a direct result of upwelling or of vital effects. Heavy delta18O values for the chalk unit are interpreted as resulting from upwelling of cool waters. Assemblage and isotopic data are consistent with this incipient ocean basin being highly productive, either as a result of upwelling or runoff of nutrient-rich waters from nearby land areas. However, it is not possible to rule out the control of vital effects on the isotopic signature of any of the fossil groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents materials on composition and texture of weakly serpentinized ultrabasic rocks from the western and eastern walls of the Markov Deep (5°30.6'-5°32.4'N) in the rift valley of the Mid-Atlantic Ridge. Predominant harzburgites with protogranular and porphyroclastic textures contain two major generations of minerals: the first generation composes the bulk of rocks and consists of Ol_89.8-90.4 + En_90.2-90.8 + Di_91.8 + Chr (Cr#32.3-36.6, Mg#67.2-70.0), while the second generation composes very thin branching veinlets and consists of PlAn_32-47 + Ol_74.3-77.1 + Opx_55.7-71.9 + Cpx_67.5 + Amph_53.7-74.2 + Ilm. Syndeformational olivine neoblasts in recrystallization zones are highly magnesian. Concentrations and covariations of major elements in harzburgites indicate that these rocks are depleted in mantle residues (high Mg# of minerals and whole-rock samples and low in CaO, Al2O3, and TiO2) that are significantly enriched in trace HFSE and REE (Zr, Hf, Y, LREE, and all REE). Mineralogy and geochemistry of harzburgites were formed by interaction of mantle residues with hydrous, strongly fractionated melts that impregnated them. Mineral composition of veinlets in harzburgites and mineralogical-geochemical characteristics of related plagiogranites and gabbronorites suggest that these plagiogranites were produced by melt residuals after crystallization of gabbronorites. Modern characteristics of harzburgites were shaped by the following processes: (i) partial melting of mantle material simultaneously with its subsolidus deformations, (ii) brittle-plastic deformations associated with cataclastic flow and recrystallization, and (iii) melt percolation along zones of maximal stress relief and interaction of this melt with magnesian mantle residue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral compositions of the plagioclase-bearing ultramafic tectonites dredged and cored seaward of the continental slope of the Galicia margin (Leg 103, Site 637) were compared to mineral compositions from onshore low-pressure ultramafic bodies (southeastern Ronda, western Pyrenees, and Lizard Point), on the basis of standardized (30-s counting time) probe analyses. The comparison was extended to some plagioclase-free harzburgites related to ophiolites (Santa Elena in Costa Rica, north Oman, and the Humboldt body in New Caledonia) on the basis of new analytical data and data from the literature. The behavior of Cr, Na, Al, Mg, Fe, Ni, and Ti in olivine, pyroxenes, and spinel was examined in order to distinguish between the effects of partial melting and mineral facies change, from the spinel to plagioclase stability fields. The peridotite from the Galicia margin appears slightly depleted in major incompatible elements and experienced a minor partial melting. However, it experienced large scale but heterogeneous recrystallization in the plagioclase field. These features are very similar to those observed in Ronda, whereas in the western Pyrenees the minerals exemplify a very minor partial-melting event (or none at all) and have retained compositions corresponding to those of the relatively high-pressure Seiland sub facies. The minerals from the Lizard Point peridotite have characteristics (low Mg/(Mg + Fe) ratio; high Cr/(Cr + Al) ratio in spinel) more related to cumulate from a differentiated tholeiitic melt than related to ophiolitic tectonite. Diffusion profiles of Al and Cr across pyroxenes and spinel show that recrystallization features occurred at different speeds or temperatures in the different bodies. The pyroxenes from Ronda would have experienced recrystallization about 14 times faster than the peridotite from the Galicia margin. The western Pyrenean lherzolites also experienced rapid recrystallization; nevertheless, because they are of a different mineral facies, the data are not directly comparable to that from Ronda and Galicia. The harzburgite at Santa Elena as well as a xenolith from alkali basalt exemplify rapid cooling characterized by very weak re-equilibration. Recrystallization speed is related to emplacement speed in the present geological environment. The slow-rising Galicia margin peridotite was emplaced by thinning of the lithospheric subcontinental mantle near an incipient mid-oceanic ridge. The fast-rising peridotites from Ronda and the western Pyrenees were hot diapirs emplaced from the asthenosphere along transcurrent faults, possibly related to the opening of the Atlantic Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exchangeable cation compositions of organic-poor terrigenous sediments containing smectite as primary ion exchanger from a series of holes along ODP Leg 168 transect on the eastern flank of the Juan de Fuca Ridge have been examined as a function of distance from the ridge axis and burial depth. The total cation exchange capacity (CEC) values of the sediments ranged from 2 to 59 meq/100 g, increasing with increases in the wt.% smectite. At the seafloor, the exchangeable cation compositions involving Na, K, Mg, and Ca, expressed in terms of equivalent fraction, are nearly constant regardless of the different transect sites: XNa = 0.21 ± 0.04, XK = 0.08 ± 0.01, XMg = 0.33 ± 0.09, and XCa = 0.38 ± 0.09. The calculated selectivity coefficients of the corresponding quaternary exchange reactions, calculated using porewater data, are in log units -5.45 ± 0.39 for Na, 1.97 ± 0.49 for K, 0.42 ± 0.41 for Mg, and 3.06 ± 0.69 for Ca. The exchangeable cation compositions below the seafloor change systematically with distance from the ridge crest and burial depth, conforming to the trends of the same cations in the porewaters. The selectivities for Na and Mg are roughly constant at temperatures from 2 to 66°C, indicating that the equivalent fractions of these two cations are independent of sediment alteration taking place on the ridge flank. Unlike Na and Mg, the temperature influence is significant for K and Ca, with Ca-selectivity decreases being coupled with increases in K-selectivity. Although potentially related to diagenetic and/or hydrothermal mineral precipitation or recrystallization, no evidence of such alteration was detected by XRD and TEM. In sites where upwelling of hydrothermal fluids from basement is occurring, the K-selectivity of the sediment is appreciably higher than at the other sites and corresponds to the formation of (Fe, Mg) rich smectite and zeolites. Our study indicates that local increases in K-selectivity at hydrothermal sites are caused by the formation of these authigenic minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data collection "Deep Drilling of Glaciers: Soviet-Russian projects in Arctic, 1975-1995" was collected by the following basic considerations: - compilation of deep (>100 m) drilling projects on Arctic glaciers, using data of (a) publications; (b) archives of IGRAN; (c) personal communication of project participants; - documentation of parameters, references. Accuracy of data and techniques applied to determine different parameters are not evaluated. The accuracy of some geochemical parameters (up to 1984 and heavy metalls) is uncertain. Most reconstructions of ice core age and of annual layer thickness are discussed; - digitizing of published diagrams (in case, when original numerical data were lost) and subsequent data conversion to equal range series and adjustment to the common units. Therefore, the equal-range series were calculated from original data or converted from digitized chart values as indicated in the metadata. For the methodological purpose, the equal-range series obtained from original and reconstructed data were compared repeatedly; the systematic difference was less then 5-7%. Special attention should be given to the fact, that the data for individual ice core parameters varies, because some parameters were originally measured or registered. Parameters were converted in equal-range series using 2 m steps; - two or more parameter values were determined, then the mean-weighted (i.e. accounting the sample length) value is assigned to the entire interval; - one parameter value was determined, measured or registered independently from the parameter values in depth intervals which over- and underlie it, then the value is assigned to the entire interval; - one parameter value was determined, measured or registered for two adjoining depth intervals, then the specific value is assigned to the depth interval, which represents >75% of sample length ; if each of adjoining depth intervals represents <75% of sample length, then the correspondent parameter value is assigned to both intervals of depth. This collection of ice core data (version 2000) was made available through the EU funded QUEEN project by S.M. Arkhipov, Moscow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixty-three samples representing 379 m of sheeted dikes from Deep Sea Drilling Project/Ocean Drilling Program Site 504B have been analyzed for major and selected trace elements by X-ray fluorescence. The samples range from microcrystalline aphyric basalts to moderately phyric (2%-10% phenocrysts) diabase that are typically multiply saturated with plagioclase, olivine, and clinopyroxene, in order of relative abundance. All analyzed samples are classified as Group D compositions with moderate to slightly elevated compatible elements (MgÆ-value = 0.65% ± 0.03%; Al2O3 = 15.5% ± 0.8%; CaO = 13.0% ± 0.3%; Ni = 114 ± 29 ppm), and unusually depleted levels of moderate to highly incompatible elements (Nb < 1 ppm; Zr = 44 ± 7 ppm; Rb < 0.5 ppm; Ba ~ 1 ppm; P2O5 = 0.07% ± 0.02%). These compositions are consistent with a multistage melting of a normal ocean ridge basaltic mantle source followed by extensive fractionation of olivine, plagioclase, and clinopyroxene. Leg 140 aphyric to sparsely phyric (0%-2% phenocrysts) basalts and diabases are compositionally indistinguishable from similarly phyric samples at higher levels in the hole. An examination of the entire crustal section, from the overlying volcanics through the sheeted dikes observed in Leg 140, reveals no significant trends indicating the enrichment or depletion of Costa Rica Rift Zone source magmas over time. Similarly, significant trends toward increased or decreased differentiation cannot be identified, although compositional patterns reflecting variable amounts of phenocryst addition are apparent at various depths. Below ? 1700 mbsf to the bottom of the Leg 140 section, there is a broadly systematic pattern of Zn depletion with depth, the result of high-temperature hydrothermal leaching. This zone of depletion is thought to be a significant source of Zn for the hydrothermal fluids depositing metal sulfides at ridge-crest hydrothermal vents and the sulfide-mineralization zone, located in the transition between pillow lavas and sheeted dikes. Localized zones of intense alteration (60%-95% recrystallization) are present on a centimeter to meter scale in many lithologic units. Within these zones, normally immobile elements Ti, Zr, Y, and rare-earth elements are strongly depleted compared with "fresher" samples centimeters away. The extent of compositional variability of these elements tends to obscure primary igneous trends if the highly altered samples are not identified or removed. At levels up to 40% (or possibly 60%) recrystallization, Ti, Zr, and Y retain their primary signatures. Although the mechanisms are unclear, it is possible that these intense alteration zones are a source of Y and rare-earth elements for the typically rare-earth-element-enriched hydrothermal vent fluids of mid-ocean ridges.