956 resultados para low voltage circuit breakers
Resumo:
Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Power performance evaluation of an electric home fan with triac-based automatic speed control system
Resumo:
In order to provide a low cost system of thermal comfort, a common model of home fan, 40 cm diameter size, had its manual four-button control system replaced by an automatic speed control. The new control system has a temperature sensor feeding a microcontroller that, by using an optic coupling, DIAC or TRIAC-based circuit, varies the RMS value of the fan motor input voltage and its speed, according to the room temperature. Over a wide range of velocity, the fan net power and the motor fan input power were measured working under both control system. The temperature of the motor stator and the voltage waveforms were observed too. Measured values analysis showed that the TRIAC-based control system makes the fan motor work at a very low power factor and efficiency values. The worst case is at low velocity range where the higher fan motor stator temperatures were registered. The poor power factor and efficiency and the harmonics signals inserted in the motor input voltage wave by the TRIAC commutation procedure are correlated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper is presented an implementation of winner-take-all circuit using CMOS technology. In the proposed configuration the inputs are current and the outputs voltage. The simulation results show that the circuit can be a winner if its input is larger than the other by 2 mu A. The simulation also shows that the response time is 100ns at a 0.2pF load capacitance. To demonstrate the functionality of the proposed circuit, a two-input winner take all circuit was built and tested by using discrete CMOS transistor array (CD40071).
Resumo:
This paper presents an analysis of a novel pulse-width-modulated (PWM) voltage step-down/up Zeta converter, featuring zero-current-switching (ZCS) at the active switches. The applications in de to de and ac to de (rectifier) operation modes are used as examples to illustrate the performance of this new ZCS-PWM Zeta converter. Regarding to the new ZCS-PWM Zeta rectifier proposed, it should be noticed that the average-current mode control is used in order to obtain a structure with high power-factor (HPF) and low total harmonic distortion (THD) at the input current.Two active switches (main and auxiliary transistors), two diodes, two small resonant inductors and one small resonant capacitor compose the novel ZCS-PWM soft-commutation cell, used in these new ZCS-PWM Zeta converters. In this cell, the turn-on of the active switches occurs in zero-current (ZC) and their turn-off in zero-current and zero-voltage (ZCZV). For the diodes, their turn-on process occurs in zero-voltage (ZV) and their reverse-recovery effects over the active switches are negligible. These characteristics make this cell suitable for Insulated-Gate Bipolar Transistors (IGBTs) applications.The main advantages of these new Zeta converters, generated from the new soft-commutation cell proposed, are possibility of obtaining isolation (through their accumulation inductors), and high efficiency, at wide load range. In addition, for the rectifier application, a high power factor and low THD in the input current ran be obtained, in agreement with LEC 1000-3-2 standards.The principle of operation, the theoretical analysis and a design example for the new de to de Zeta converter operating in voltage step-down mode are presented. Experimental results are obtained from a test unit with 500W output power, 110V(dc) output voltage, 220V(dc) input voltage, operating at 50kHz switching frequency. The efficiency measured at rated toad is equal to 97.3%for this new Zeta converter.Finally, the new Zeta rectifier is analyzed, and experimental results from a test unit rated at 500W output power, 110V(dc) output voltage, 220V(rms) input voltage, and operating at 50kHz switching frequency, are presented. The measured efficiency is equal to 96.95%, the power-factor is equal to 0.98, and the input current THD is equal to 19.07%, for this new rectifier operating at rated load.
Resumo:
A novel single-phase voltage source rectifier capable to achieve High-Power-Factor (HPF) for variable speed refrigeration system application, is proposed in this paper. The proposed system is composed by a single-phase high-power-factor boost rectifier, with two cells in interleave connection, operating in critical conduction mode, and employing a soft-switching technique, controlled by a Field Programmable Gate Array (FPGA), associated with a conventional three-phase IGBT bridge inverter (VSI - Voltage Source Inverter), controlled by a Digital Signal Processor (DSP). The soft-switching technique for the input stage is based on zero-current-switching (ZCS) cells. The rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the EEC61000-3-2 standards. The digital controller for the output stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at a refrigerator prototype.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electrochemical behaviour of cold-rolled low carbon steel was studied on both active and passive potential regions in borate buffer solutions with and without the addition of sodium citrate (NaCit). In the active region anodic charges increased significantly and RCT values decreased with citrate, due to the formation of soluble complexes. In the passive potential region the film formed at +0.4 V in borate buffer solution with and without 0.010 M NaCit is probably enriched by Fe3O4 oxide, while films formed at +0.8 V are probably enriched by gamma-Fe2O3. The equivalent circuit [R-s(R(CT)Q)] fitted all experimental impedance data. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A linear, tunable CMOS transconductance stage is introduced. Drain voltage of the input transistor operating in triode region is settled by a regulation loop and a first-order linear relationship between g(m) and a de bias voltage is achieved. In addition to easy tuning, this technique offers circuit simplicity, wide dynamic range, high input and output impedances and low consumption. The transconductor is presented on both single-ended and fully-differential versions. A 3rd-order elliptical low-pass g(m)-C filter with a nominal roll-off frequency of 2MHz is used as one example for the many applications of the proposed transconductor. SPICE data describe circuits performances and filter tunabilily Passband is tuned at a rate of 2.36KHz/mV and good linearity is indicated by a 0.89% THD for an 800mV(p-p) balanced-driven input.
Resumo:
Crowbar switches are largely used in plasma devices, such as field-reversed configuration (FRC) machines and tokamaks, to avoid energy return from the discharge coil to the capacitor bank. A method of identification of all resistances, inductances and currents involved in capacitor bank discharges using a crowbar is proposed based on the derivation of the general analytical form of the coil current. This analysis can also be used for optimization of the discharge, reducing the ripple amplitude inherent in the crowbar-switched current. Fitting results of the TC-1 UNICAMP FRC device are also presented in this work.
Resumo:
A robust 12 kW rectifier with low THD in the line currents, based on an 18-pulse transformer arrangement with reduced kVA capacities followed by a high-frequency isolation stage is presented in this work. Three full-bridge (buck-based) converters are used to allow galvanic isolation and to balance the dc-link currents, without current sensing or current controller. The topology provides a regulated dc output with a very simple and well-known control strategy and natural three-phase power factor correction. The phase-shift PWM technique, with zero-voltage switching is used for the high-frequency dc-dc stage. Analytical results from Fourier analysis of winding currents and the vector diagram of winding voltages are presented. Experimental results from a 12 kW prototype are shown in the paper to verify the efficiency, robustness and simplicity of the command circuitry to the proposed concept.