989 resultados para joint hypermobility syndrome
Resumo:
This paper proposes a denoising algorithm which performs non-local means bilateral filtering. As existing literature suggests, non-local means (NLM) is one of the widely used denoising techniques, but has a critical drawback of smoothing of edges. In order to improve this, we perform fast and efficient NLM using Approximate Nearest Neighbour Fields and improve the edge content in denoising by formulating a joint-bilateral filter. Using the proposed joint bilateral, we are able to denoise smooth regions using the NLM approach and efficient edge reconstruction is obtained from the bilateral filter. Furthermore, to avoid tedious parameter selection, we carry out a noise estimation before performing joint bilateral filtering. The proposed approach is observed to perform well on high noise images.
Resumo:
With the advances in technology, seismological theory, and data acquisition, a number of high-resolution seismic tomography models have been published. However, discrepancies between tomography models often arise from different theoretical treatments of seismic wave propagation, different inversion strategies, and different data sets. Using a fixed velocity-to-density scaling and a fixed radial viscosity profile, we compute global mantle flow models associated with the different tomography models and test the impact of these for explaining surface geophysical observations (geoid, dynamic topography, stress, and strain rates). We use the joint modeling of lithosphere and mantle dynamics approach of Ghosh and Holt (2012) to compute the full lithosphere stresses, except that we use HC for the mantle circulation model, which accounts for the primary flow-coupling features associated with density-driven mantle flow. Our results show that the seismic tomography models of S40RTS and SAW642AN provide a better match with surface observables on a global scale than other models tested. Both of these tomography models have important similarities, including upwellings located in Pacific, Eastern Africa, Iceland, and mid-ocean ridges in the Atlantic and Indian Ocean and downwelling flows mainly located beneath the Andes, the Middle East, and central and Southeast Asia.
Resumo:
The effect of thermal-mechanical loading on a surface mount assembly with interface cracks between the solder and the resistor and between the solder and the printed circuit board (PCB) was studied using a non-linear thermal finite element analysis. The thermal effect was taken as cooling from the solder eutectic temperature to room temperature. Mechanical loading at the ends of the PCB was also applied. The results showed that cooling had the effect of causing large residual shear displacement at the region near the interface cracks. The mechanical loading caused additional crack opening displacements. The analysis on the values of J-integral for the interface cracks showed that J-integral was approximately path independent, and that the effect of crack at the solder/PCB interface is much more serious than that between the component and solder.
Resumo:
Regular zinc oxide (ZnO) tetrapods with a flat plane have been obtained on Si(1 0 0) substrate via the chemical vapour deposition approach. The x-ray diffraction result suggests that these tetrapods are all single crystals with a wurtzite structure that grow along the (0 0 0 1) direction and corresponding electron backscatter diffraction analysis reveals the crystal orientation of growth and exposed surface. Furthermore, we find some ZnO tetrapods with some legs off and the angles between every two legs are measured with the aid of scanning electron microscopy and image analysis, which benefit to reveal the structure of ZnO tetrapods joint. The structure model and growth mechanism of ZnO tetrapods are proposed. Besides, the stable model of the interface was obtained through the density-functional theory calculation and the energy needed to break the twin plane junction was calculated as 5.651 J m(-2).
Resumo:
Severe acute respiratory syndrome (SARS) is a serious disease with many puzzling features. We present a simple, dynamic model to assess the epidemic potential of SARS and the effectiveness of control measures. With this model, we analysed the SARS epidemic data in Beijing. The data fitting gives the basic case reproduction number of 2.16 leading to the outbreak, and the variation of the effective reproduction number reflecting the control effect. Noticeably, our study shows that the response time and the strength of control measures have significant effects on the scale of the outbreak and the lasting time of the epidemic.