875 resultados para irritable bowel disease
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [C-14] mannitol as a paracellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C-14-) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing short-term toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C-14-OP90-103, which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The L- and D-diastereomers of C-14-OP90-103 had distinctly different effects. The D-isomer, which releases intact OP90-103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The L- isomer, which releases OP90-103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C-14-OP90-103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.
Resumo:
CCR5 plays a key role in the distribution of CD45RO+ T cells and contributes to generation of a T helper 1 immune response. CCR5-Delta32 is a 32-bp deletion associated with significant reduction in cell surface expression of the receptor. We investigated the role of CCR5-Delta32 on susceptibility to ulcerative colitis (UC), Crohn's disease ( CD) and primary sclerosing cholangitis (PSC). Genotype and allelic association analyses were performed in 162 patients with UC, 131 with CD, 71 with PSC and 419 matched controls. There was a significant difference in CCR5 genotype (OR 2.27, P = 0.003) between patients with sclerosing cholangitis and controls. Similarly, CCR5-Delta32 allele frequency was significantly higher in sclerosing cholangitis (17.6%) compared to controls (9.9%, OR 2.47, P = 0.007) and inflammatory bowel disease patients without sclerosing cholangitis ( 11.3%, OR 1.9, P = 0.027). There were no significant differences in CCR5 genotype or allele frequency between those with either UC or CD and controls. Genotypes with the CCR5-Delta32 variant were increased in patients with severe liver disease defined by portal hypertension and/or transplantation (45%) compared to those with mild liver disease (21%, OR 3.17, P = 0.03). The CCR5-Delta32 mutation may influence disease susceptibility and severity in patients with PSC.
Resumo:
The advent of novel biological therapies for the treatment of rheumatic disease has renewed interest in the seronegative spondyloarthropathies (SpAs). International efforts are redefining disease classification and measures of disease activity, outcome, metrology, and imaging. However, opinion is divided between those who propose that the SpA group represents the same disease with variable expression (the lumpers) and those who consider these to be separate diseases with shared clinical features (the splitters). This review presents the evidence for both approaches.
Resumo:
The development of colorectal cancer is a major complication for patients with chronic idiopathic colitis. Colitis-associated tumours tend to occur at a younger age and be more aggressive than sporadic colorectal cancers. While we have previously associated the presence of tumour-infiltrating lymphocytes (TILs) and increased apoptosis in sporadic colorectal cancer with high-level microsatellite instability and improved prognosis, little is known of the relationship between these variables in colitis-associated colorectal cancer. The aim of this study was to correlate TILs and tumour cell apoptosis in colitis-associated neoplasms stratified according to microsatellite instability. Twenty tumour and 11 dysplastic samples resected from 21 patients with long-standing colitis were analysed for microsatellite instability at 10 microsatellite markers. TIL distribution (CD3, CD8) and function (granzyme B) were quantified by immunohistochemistry. Neoplastic cell apoptosis was assessed using the M30 CytoDEATH antibody. These findings were compared with 40 microsatellite stable (MSS) sporadic colorectal cancers previously evaluated for TILs and neoplastic apoptosis. Low-level microsatellite instability was found in 1/20 colitis-associated tumours. All other colitis-associated lesions were designated MSS. CD3(+) and CD8(+) TIL counts were significantly higher in colitis-associated lesions compared with NISS sporadic colorectal cancer (p < 0.0001, p = 0.001 respectively). Despite their higher TIL density, colitis-associated tumours were more likely to present late (Dukes' stage C or D) (P = 0.02). Functionally, colitis-associated TILs demonstrated significantly less granzyme B expression compared to sporadic cancers (p = 0.002). The level of tumour cell apoptosis was similar between the two groups (sporadic, 1.53%; colitis cancers, 1.45%). In conclusion, NISS colitis-associated tumours have a higher prevalence of CD3(+)/CD8(+) TILs but no associated increase in tumour cell killing by apoptosis. Unlike cytotoxic T cells in sporadic colorectal cancer, TILs do not appear to enhance the prognosis of colitis-associated colorectal cancer. This may be related to an impairment of granzyme B expression within these lesions. Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
The complement system is an innate immune defense mechanism that protects the host from infection and injury. Complement activation results in the formation of anaphylatoxins, including the biologically active protein C5a. This anaphylatoxin is a potent chemotactic agent for immune and inflammatory cells and induces cell activation. In situations of excessive or uncontrolled complement activation, the overproduction of C5a can cause deleterious effects to the host, and this process is implicated in the pathogenesis of numerous immunoinflammatory disease states, including rheumatoid arthritis, psoriasis, inflammatory bowel disease, ischemia-reperfusion injuries and others. The presence of C5a in a wide variety of condition's has prompted many groups to examine the potential of inhibiting this complement activation product, with the aim of controlling these diseases and reducing the pathologic process. However, to date there is no clinically available specific C5a inhibitor and development of this new drug class is still in a relatively early stage, although limited phase I and phase II human clinical trials have been undertaken in the last few years with selected agents. In this review, examination of the current evidence supporting a specific role of C5a in selected disease states and an overview of potential therapeutic C5a inhibitors will enable the critical evaluation of the potential for C5a as a therapeutic target.
Resumo:
Complement factor 5a (C5a) is formed upon complement system activation in response to infection, injury or disease. Whilst C5a is a potent mediator of immune and inflammatory processes, excessive production or inadequate regulation of C5a has been implicated in the pathogenesis of numerous immuno-inflammatory diseases, predominantly through experimental studies utilising animal models of disease. Both acute and chronic conditions may benefit from C5a inhibition, including rheumatoid arthritis, inflammatory bowel disease, asthma, psoriasis, haemorrhagic shock and neurodegenerative conditions. The potentially broad clinical application for treatments that inhibit the activity of C5a at C5a receptors and the large global market for anti-inflammatory therapeutics have made C5a and the C5a receptor attractive targets for academic and commercial drug development programmes. in the past 5 years, interest in C5a as a drug target has grown substantially, and this activity has resulted in a collection of patents and scientific papers reporting novel C5a and C5a receptor inhibitors and antagonists, and generated a secondary stream of patent applications broadly claiming the use of C5/C5a inhibitors as a method of treating various immune and inflammatory conditions. This paper will review the physiology and pathophysiology of C5a and discuss the development of C5a and C5a receptor inhibitors in light of the recent scientific and patent literature.