993 resultados para interpretive code generation
Resumo:
We developed a rapid and simple assay for the coupled in vitro synthesis of oxylipins using free unsaturated fatty acids as substrates. Reactions were catalysed with extracts expressed from living plant tissues. Preliminary experiments involving the cell free transformation of fatty acid hydroperoxides revealed that storage or pretreatment of the plant extract rapidly altered its capacity to catalyse the generation of oxidised fatty acid derivatives. This could reflect changes in oxylipin generation that might take place in situ in damaged plant cells during herbivory. All subsequent experiments were performed without dilution, titration or any other modification of the plant extract prior to its addition to the assay system. The assays were used to study, for the first time, tissue-specific differences in fatty acid transformation to divinyl ethers. Root tissues from tomato efficiently catalysed the formation of corneleic and colnelenic acids from linoleic acid and linolenic acids, respectively, whereas leaf, hypocotyl and cotyledon extracts did not promote the formation of these compounds. We observed the efficient generation of 9-oxo-nonanoic acid from the substrate linolenic acid and speculate that this aldehyde could arise either from the action of hydroperoxide lyase on 9-hydroperoxylinolenic acid or by a novel route involving cleavage of colnelenic acid which was also present among the products of the reaction. A potential role of divinyl ethers as substrates for the generation of toxic aldehydes is discussed
Resumo:
Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline.