984 resultados para infinite dimensional differential geometry
Resumo:
In this article we explore the so-called two-dimensional tree− search problem. We prove that for integers m of the form m = (2^(st) − 1)/(2^s − 1) the rectangles A(m, n) are all tight, no matter what n is. On the other hand, we prove that there exist infinitely many integers m for which there is an infinite number of n’s such that A(m, n) is loose. Furthermore, we determine the smallest loose rectangle as well as the smallest loose square (A(181, 181)). It is still undecided whether there exist infinitely many loose squares.
On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
Resumo:
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55
Resumo:
Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.
Resumo:
2000 Mathematics Subject Classification: 60H15, 60H40
Resumo:
2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.
Resumo:
One of the most pressing demands on electrophysiology applied to the diagnosis of epilepsy is the non-invasive localization of the neuronal generators responsible for brain electrical and magnetic fields (the so-called inverse problem). These neuronal generators produce primary currents in the brain, which together with passive currents give rise to the EEG signal. Unfortunately, the signal we measure on the scalp surface doesn't directly indicate the location of the active neuronal assemblies. This is the expression of the ambiguity of the underlying static electromagnetic inverse problem, partly due to the relatively limited number of independent measures available. A given electric potential distribution recorded at the scalp can be explained by the activity of infinite different configurations of intracranial sources. In contrast, the forward problem, which consists of computing the potential field at the scalp from known source locations and strengths with known geometry and conductivity properties of the brain and its layers (CSF/meninges, skin and skull), i.e. the head model, has a unique solution. The head models vary from the computationally simpler spherical models (three or four concentric spheres) to the realistic models based on the segmentation of anatomical images obtained using magnetic resonance imaging (MRI). Realistic models – computationally intensive and difficult to implement – can separate different tissues of the head and account for the convoluted geometry of the brain and the significant inter-individual variability. In real-life applications, if the assumptions of the statistical, anatomical or functional properties of the signal and the volume in which it is generated are meaningful, a true three-dimensional tomographic representation of sources of brain electrical activity is possible in spite of the ‘ill-posed’ nature of the inverse problem (Michel et al., 2004). The techniques used to achieve this are now referred to as electrical source imaging (ESI) or magnetic source imaging (MSI). The first issue to influence reconstruction accuracy is spatial sampling, i.e. the number of EEG electrodes. It has been shown that this relationship is not linear, reaching a plateau at about 128 electrodes, provided spatial distribution is uniform. The second factor is related to the different properties of the source localization strategies used with respect to the hypothesized source configuration.
Resumo:
This work is the first work using patterned soft underlayers in multilevel three-dimensional vertical magnetic data storage systems. The motivation stems from an exponentially growing information stockpile, and a corresponding need for more efficient storage devices with higher density. The world information stockpile currently exceeds 150EB (ExaByte=1x1018Bytes); most of which is in analog form. Among the storage technologies (semiconductor, optical and magnetic), magnetic hard disk drives are posed to occupy a big role in personal, network as well as corporate storage. However; this mode suffers from a limit known as the Superparamagnetic limit; which limits achievable areal density due to fundamental quantum mechanical stability requirements. There are many viable techniques considered to defer superparamagnetism into the 100's of Gbit/in2 such as: patterned media, Heat-Assisted Magnetic Recording (HAMR), Self Organized Magnetic Arrays (SOMA), antiferromagnetically coupled structures (AFC), and perpendicular magnetic recording. Nonetheless, these techniques utilize a single magnetic layer; and can thusly be viewed as two-dimensional in nature. In this work a novel three-dimensional vertical magnetic recording approach is proposed. This approach utilizes the entire thickness of a magnetic multilayer structure to store information; with potential areal density well into the Tbit/in2 regime. ^ There are several possible implementations for 3D magnetic recording; each presenting its own set of requirements, merits and challenges. The issues and considerations pertaining to the development of such systems will be examined, and analyzed using empirical and numerical analysis techniques. Two novel key approaches are proposed and developed: (1) Patterned soft underlayer (SUL) which allows for enhanced recording of thicker media, (2) A combinatorial approach for 3D media development that facilitates concurrent investigation of various film parameters on a predefined performance metric. A case study is presented using combinatorial overcoats of Tantalum and Zirconium Oxides for corrosion protection in magnetic media. ^ Feasibility of 3D recording is demonstrated, and an emphasis on 3D media development is emphasized as a key prerequisite. Patterned SUL shows significant enhancement over conventional "un-patterned" SUL, and shows that geometry can be used as a design tool to achieve favorable field distribution where magnetic storage and magnetic phenomena are involved. ^
Resumo:
Fluorescence-enhanced optical imaging is an emerging non-invasive and non-ionizing modality towards breast cancer diagnosis. Various optical imaging systems are currently available, although most of them are limited by bulky instrumentation, or their inability to flexibly image different tissue volumes and shapes. Hand-held based optical imaging systems are a recent development for its improved portability, but are currently limited only to surface mapping. Herein, a novel optical imager, consisting primarily of a hand-held probe and a gain-modulated intensified charge coupled device (ICCD) detector, is developed towards both surface and tomographic breast imaging. The unique features of this hand-held probe based optical imager are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) reduce overall imaging time using a unique measurement geometry, and (iii) perform tomographic imaging for tumor three-dimensional (3-D) localization. Frequency-domain based experimental phantom studies have been performed on slab geometries (650 ml) under different target depths (1-2.5 cm), target volumes (0.45, 0.23 and 0.10 cc), fluorescence absorption contrast ratios (1:0, 1000:1 to 5:1), and number of targets (up to 3), using Indocyanine Green (ICG) as fluorescence contrast agents. An approximate extended Kalman filter based inverse algorithm has been adapted towards 3-D tomographic reconstructions. Single fluorescence target(s) was reconstructed when located: (i) up to 2.5 cm deep (at 1:0 contrast ratio) and 1.5 cm deep (up to 10:1 contrast ratio) for 0.45 cc-target; and (ii) 1.5 cm deep for target as small as 0.10 cc at 1:0 contrast ratio. In the case of multiple targets, two targets as close as 0.7 cm were tomographically resolved when located 1.5 cm deep. It was observed that performing multi-projection (here dual) based tomographic imaging using a priori target information from surface images, improved the target depth recovery over using single projection based imaging. From a total of 98 experimental phantom studies, the sensitivity and specificity of the imager was estimated as 81-86% and 43-50%, respectively. With 3-D tomographic imaging successfully demonstrated for the first time using a hand-held based optical imager, the clinical translation of this technology is promising upon further experimental validation from in-vitro and in-vivo studies.
Resumo:
Subspaces and manifolds are two powerful models for high dimensional signals. Subspaces model linear correlation and are a good fit to signals generated by physical systems, such as frontal images of human faces and multiple sources impinging at an antenna array. Manifolds model sources that are not linearly correlated, but where signals are determined by a small number of parameters. Examples are images of human faces under different poses or expressions, and handwritten digits with varying styles. However, there will always be some degree of model mismatch between the subspace or manifold model and the true statistics of the source. This dissertation exploits subspace and manifold models as prior information in various signal processing and machine learning tasks.
A near-low-rank Gaussian mixture model measures proximity to a union of linear or affine subspaces. This simple model can effectively capture the signal distribution when each class is near a subspace. This dissertation studies how the pairwise geometry between these subspaces affects classification performance. When model mismatch is vanishingly small, the probability of misclassification is determined by the product of the sines of the principal angles between subspaces. When the model mismatch is more significant, the probability of misclassification is determined by the sum of the squares of the sines of the principal angles. Reliability of classification is derived in terms of the distribution of signal energy across principal vectors. Larger principal angles lead to smaller classification error, motivating a linear transform that optimizes principal angles. This linear transformation, termed TRAIT, also preserves some specific features in each class, being complementary to a recently developed Low Rank Transform (LRT). Moreover, when the model mismatch is more significant, TRAIT shows superior performance compared to LRT.
The manifold model enforces a constraint on the freedom of data variation. Learning features that are robust to data variation is very important, especially when the size of the training set is small. A learning machine with large numbers of parameters, e.g., deep neural network, can well describe a very complicated data distribution. However, it is also more likely to be sensitive to small perturbations of the data, and to suffer from suffer from degraded performance when generalizing to unseen (test) data.
From the perspective of complexity of function classes, such a learning machine has a huge capacity (complexity), which tends to overfit. The manifold model provides us with a way of regularizing the learning machine, so as to reduce the generalization error, therefore mitigate overfiting. Two different overfiting-preventing approaches are proposed, one from the perspective of data variation, the other from capacity/complexity control. In the first approach, the learning machine is encouraged to make decisions that vary smoothly for data points in local neighborhoods on the manifold. In the second approach, a graph adjacency matrix is derived for the manifold, and the learned features are encouraged to be aligned with the principal components of this adjacency matrix. Experimental results on benchmark datasets are demonstrated, showing an obvious advantage of the proposed approaches when the training set is small.
Stochastic optimization makes it possible to track a slowly varying subspace underlying streaming data. By approximating local neighborhoods using affine subspaces, a slowly varying manifold can be efficiently tracked as well, even with corrupted and noisy data. The more the local neighborhoods, the better the approximation, but the higher the computational complexity. A multiscale approximation scheme is proposed, where the local approximating subspaces are organized in a tree structure. Splitting and merging of the tree nodes then allows efficient control of the number of neighbourhoods. Deviation (of each datum) from the learned model is estimated, yielding a series of statistics for anomaly detection. This framework extends the classical {\em changepoint detection} technique, which only works for one dimensional signals. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.
Resumo:
The central idea of this dissertation is to interpret certain invariants constructed from Laplace spectral data on a compact Riemannian manifold as regularized integrals of closed differential forms on the space of Riemannian metrics, or more generally on a space of metrics on a vector bundle. We apply this idea to both the Ray-Singer analytic torsion
and the eta invariant, explaining their dependence on the metric used to define them with a Stokes' theorem argument. We also introduce analytic multi-torsion, a generalization of analytic torsion, in the context of certain manifolds with local product structure; we prove that it is metric independent in a suitable sense.
Resumo:
Miniaturized, self-sufficient bioelectronics powered by unconventional micropower may lead to a new generation of implantable, wireless, minimally invasive medical devices, such as pacemakers, defibrillators, drug-delivering pumps, sensor transmitters, and neurostimulators. Studies have shown that micro-enzymatic biofuel cells (EBFCs) are among the most intuitive candidates for in vivo micropower. In the fisrt part of this thesis, the prototype design of an EBFC chip, having 3D intedigitated microelectrode arrays was proposed to obtain an optimum design of 3D microelectrode arrays for carbon microelectromechanical systems (C-MEMS) based EBFCs. A detailed modeling solving partial differential equations (PDEs) by finite element techniques has been developed on the effect of 1) dimensions of microelectrodes, 2) spatial arrangement of 3D microelectrode arrays, 3) geometry of microelectrode on the EBFC performance based on COMSOL Multiphysics. In the second part of this thesis, in order to investigate the performance of an EBFC, behavior of an EBFC chip performance inside an artery has been studied. COMSOL Multiphysics software has also been applied to analyze mass transport for different orientations of an EBFC chip inside a blood artery. Two orientations: horizontal position (HP) and vertical position (VP) have been analyzed. The third part of this thesis has been focused on experimental work towards high performance EBFC. This work has integrated graphene/enzyme onto three-dimensional (3D) micropillar arrays in order to obtain efficient enzyme immobilization, enhanced enzyme loading and facilitate direct electron transfer. The developed 3D graphene/enzyme network based EBFC generated a maximum power density of 136.3 μWcm-2 at 0.59 V, which is almost 7 times of the maximum power density of the bare 3D carbon micropillar arrays based EBFC. To further improve the EBFC performance, reduced graphene oxide (rGO)/carbon nanotubes (CNTs) has been integrated onto 3D mciropillar arrays to further increase EBFC performance in the fourth part of this thesisThe developed rGO/CNTs based EBFC generated twice the maximum power density of rGO based EBFC. Through a comparison of experimental and theoretical results, the cell performance efficiency is noted to be 67%.
Resumo:
Let $M$ be a compact, oriented, even dimensional Riemannian manifold and let $S$ be a Clifford bundle over $M$ with Dirac operator $D$. Then \[ \textsc{Atiyah Singer: } \quad \text{Ind } \mathsf{D}= \int_M \hat{\mathcal{A}}(TM)\wedge \text{ch}(\mathcal{V}) \] where $\mathcal{V} =\text{Hom}_{\mathbb{C}l(TM)}(\slashed{\mathsf{S}},S)$. We prove the above statement with the means of the heat kernel of the heat semigroup $e^{-tD^2}$. The first outstanding result is the McKean-Singer theorem that describes the index in terms of the supertrace of the heat kernel. The trace of heat kernel is obtained from local geometric information. Moreover, if we use the asymptotic expansion of the kernel we will see that in the computation of the index only one term matters. The Berezin formula tells us that the supertrace is nothing but the coefficient of the Clifford top part, and at the end, Getzler calculus enables us to find the integral of these top parts in terms of characteristic classes.
Resumo:
We consider Sklyanin algebras $S$ with 3 generators, which are quadratic algebras over a field $\K$ with $3$ generators $x,y,z$ given by $3$ relations $pxy+qyx+rzz=0$, $pyz+qzy+rxx=0$ and $pzx+qxz+ryy=0$, where $p,q,r\in\K$. this class of algebras has enjoyed much attention. In particular, using tools from algebraic geometry, Feigin, Odesskii \cite{odf}, and Artin, Tate and Van Den Bergh, showed that if at least two of the parameters $p$, $q$ and $r$ are non-zero and at least two of three numbers $p^3$, $q^3$ and $r^3$ are distinct, then $S$ is Artin--Schelter regular. More specifically, $S$ is Koszul and has the same Hilbert series as the algebra of commutative polynomials in 3 indeterminates (PHS). It has became commonly accepted that it is impossible to achieve the same objective by purely algebraic and combinatorial means like the Groebner basis technique. The main purpose of this paper is to trace the combinatorial meaning of the properties of Sklyanin algebras, such as Koszulity, PBW, PHS, Calabi-Yau, and to give a new constructive proof of the above facts due to Artin, Tate and Van Den Bergh. Further, we study a wider class of Sklyanin algebras, namely
the situation when all parameters of relations could be different. We call them generalized Sklyanin algebras. We classify up to isomorphism all generalized Sklyanin algebras with the same Hilbert series as commutative polynomials on
3 variables. We show that generalized Sklyanin algebras in general position have a Golod–Shafarevich Hilbert series (with exception of the case of field with two elements).