905 resultados para identification and validation of knowledge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterococci are one of the leading causes of nosocomial infections, and Enterococcus faecalis causes the majority of enterococcal infections. However, the mechanisms of enterococcal pathogenesis are still not yet understood. In our initial screening of E. faecalis strain OG1RF genomic libraries, autolysin and a homolog of a protein of Enterococcus faecium previously designated P54 were found to be two major antigens that reacted with human patient sera, and an antigen designated MH-1 antigen that reacted with serum from a endocarditis patient was also identified. To explore a possible role for these antigens in enterococcal infections, the genes encoding these three antigens were disrupted in Enterococcus faecalis OG1RF. ^ To explore a possible role of an E. faecalis gelatinase (encoded by gelE), which belongs to a family of Zn-metalloproteases that have been shown to be virulence factors in other organisms, in enterococcal infections, an insertion mutant was constructed in OG1RF and tested in the mouse peritonitis model. The mice infected with the gelE mutant showed a significantly prolonged survival compared to the wild type strain. To study the expression of gelE, the regions flanking gelE were sequenced. Sequence analysis of the gelE flanking regions revealed three genes (fsrA, fsrB and fsrC) upstream of gelE that show homology to the genes in a locus (agr) that globally regulates the expression of virulence factors in Staphylococcus aureus and one open reading frame (sprE) with homology to bacterial serine protease downstream of gelE. ^ In conclusion, in this study of identification of possible virulence factors in E. faecalis surface and secreted proteins, of three genes encoding antigens detected by human patient sera, none could be shown to effect virulence in the mouse peritonitis model. Inactivation of one of these antigens (autolysin) was shown to slightly increase the tolerance of E. faecalis to penicillin. A serine protease and a locus (fsr) that regulates the expression of gelE and sprE were shown to be important for enterococcal infection in the mouse peritonitis model. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterococci are normal flora in the human intestinal tract, and also one of the leading causes of nosocomial infections, with most of the clinical isolates being Enterococcus faecalis and Enterococcus faecium. Despite extensive studies on the antibiotic resistance, the pathogenicity of enterococci is not well understood, especially for E. faecium. To identify potential virulence factors based on their antigenicity during infection, E. faecium genomic libraries were constructed and screened using sera from patients with E. faecium endocarditis. ^ As one of my projects, total polysaccharides were extracted from E. faecalis OG1RF and from two epa mutants constructed previously, TX5179 and TX5180, and western blots with patient sera showed that an immuno-reactive polysaccharide present in wild type OG1RF was not produced by either of the two epa mutants. The epa mutants were more sensitive to ethanol stress, neutrophil killing and neutrophil phagocytosis than the wild type OG1RF. ^ Expression of virulence factors is commonly regulated by two component systems. A BLAST search was performed to identify potential two component systems in the E. faecalis V583 genome database using PhoP/PhoS as query sequences, and 11 gene pairs were identified, seven of which were disrupted in E. faecalis OGIRF. ^ Finally, an in vitro translocation model was established for enterococci. E. faecalis strain OG1RF and E. faecium strain DO were shown to be able to translocate across a T84 monolayer, while E. coli strain DH5α and E. faecalis strain E1 could not. ^ In conclusion, several E. faecium antigens expressed in infection (whose antibodies present in sera from patients with E. faecium endocarditis) were identified, two of which, SagA and GlyA, were characterized and suggested to be involved in cell wall metabolism. E. faecalis epa gene cluster (involving in polysaccharide biosynthesis and known to be involved in virulence of E. faecalis in mice) was shown to be involved in hindering neutrophil killing. Several two-component systems were identified in E. faecalis and two of which, EtaRS and EtbRS, were involved in E. faecalis virulence in a mouse peritonitis model.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carcinomas that arise from the ovarian surface epithelium represent a great challenge in gynecologic oncology. Although the prognosis of ovarian cancer is influenced by many factors capable of predicting clinical outcome, including tumor stage, pathological grade, and amount of residual disease following primary surgery, the biological aspects of ovarian cancer are not completely understood, thus implying that there may be other predictive indicators that could be used independently or in conjunction with these factors to provide a clearer clinical picture. The identification of additional markers with biological relevance is desirable. To identify disease-associated peptides, a phage display random peptide library was used to screen immunoglobulins derived from a patient with ovarian cancer. One peptide was markedly enriched following three rounds of affinity selection. The presence of autoantibodies against the peptide was examined in a panel of ovarian cancer patients. Stage IV patients exhibited a high percentage of positive reactivity (59%). This was in contrast to stage III patients, who only displayed 7% positive reactivity. Antibodies against the peptide were affinity purified, and heat-shock protein 90 (Hsp90) was identified as the corresponding autoantigen. The expression profile of the identified antigen was determined. Hsp90 was expressed in all sections examined regardless of degree of anaplasia. This thesis shows that utilizing the humoral response to ovarian cancer can be used to identify a tumor antigen in ovarian cancer. The data show that certain antigens may be expressed in ovarian tumors independent of the disease stage or grade, whereas circulating antibodies against such epitopes are only found in a subset of patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic pathogen that is a major health threat in the clinical and community settings. An interesting hallmark of patients infected with S. aureus is that they do not usually develop a protective immune response and are susceptible to reinfection, in part because of the ability of S. aureus to modulate host immunity. The ability to evade host immune responses is a key contributor to the infection process and is critical in S. aureus survival and pathogenesis. This study investigates the immunomodulatory effects of two secreted proteins produced by S. aureus, the MHC class II analog protein (Map) and the extracellular fibrinogen-binding protein (Efb). Map has been demonstrated to modulate host immunity by interfering with T cell function. Map has been shown to significantly reduce T cell proliferative responses and significantly reduce delayed-type hypersensitivity responses to challenge antigen. In addition, the effects of Map on the infection process were tested in a mouse model of infection. Mice infected with Map− S. aureus (Map deficient strain) presented with significantly reduced levels of arthritis, osteomyelitis and abscess formation compared to mice infected with the wild-type Map+S. aureus strain suggesting that Map−S. aureus is much less virulent than Map+S. aureus. Furthermore, Map−S. aureus-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map +S. aureus-infected controls, suggesting that T cells can affect disease outcome following S. aureus infection and Map may attenuate cellular immunity against S. aureus. The extracellular fibrinogen-binding protein (Efb) was identified when cultured S. aureus supernatants were probed with the complement component C3. The binding of C3 to Efb resulted in studies investigating the effects of Efb on complement activation. We have demonstrated that Efb can inhibit both the classical and alternative complement pathways. Moreover, we have shown that Efb can inhibit complement mediated opsonophagocytosis. Further studies have characterized the Efb-C3 binding interaction and localized the C3-binding domain to the C-terminal region of Efb. In addition, we demonstrate that Efb binds specifically to a region within the C3d fragment of C3. This study demonstrates that Map and Efb can interfere with both the acquired and innate host immune pathways and that these proteins contribute to the success of S. aureus in evading host immunity and in establishing disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In common with other members of the p120-catenin subclass of catenins, ARVCF-catenin appears to have multiple cellular and developmental functions. In Xenopus, our lab recently demonstrated that xARVCF- and Xp120-catenins are each essential for early vertebrate embryogenesis, being functionally linked to Rho-family GTPases (RhoA, Rac) and cadherin metabolic stability. For the project described here, the yeast two-hybrid system was employed to screen a Xenopus laevis neurula library for proteins that interact with xARVCF, resulting in the identification of the Xenopus homolog of Kazrin (xKazrin). Kazrin is a variably-spliced protein of unknown function that has been shown to interact with periplakin and envoplakin, components of desmosomal junctions. Kazrin's primary sequence is highly conserved across vertebrate species and is composed of an amino-terminal nuclear export sequence (NES), a carboxy-terminal nuclear localization sequence (NLS) and a central predicted coiled-coil domain. In vitro and in vivo authenticity tests demonstrated that xARVCF-catenin interacts directly with xKazrin via xARVCF's Armadillo and carboxy-terminal regions and xKazrin's coiled-coil domain. The interaction of xARVCF-catenin with xKazrin is specific and does not extend to the related Xp120-catenin. xKazrin co-localized with E-cadherin at sites of cell-cell contact and could be co-immunoprecipitated with components of the cadherin complex. xKazrin was also present in the cytoplasm and nucleus. Suggestive of a nuclear role, mutation of xKazrin's predicted NLS resulted in nuclear exclusion, while deletion of the predicted NES resulted in loss of sensitivity to nuclear export inhibitors. Within Xenopus embryos, xKazrin was expressed across all developmental stages and appeared at varying levels in adult tissues. Morpholino depletion of xKazrin from Xenopus embryos resulted in axial elongation abnormalities and loss of tissue integrity after neurulation. Over-expression of xKazrin had no effect, while over-expression of a NLS mutant resulted in a mild phenotype similar to that seen in xKazrin depleted embryos. Interestingly, the axial phenotype resulting from reduced xKazrin levels was largely rescuable by xARVCF over-expression. In conjunction with xARVCF-catenin, xKazrin has properties consistent with its function at cell-cell contact sites and in the nucleus. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Symptoms has been shown to predict quality of life, treatment course and survival in solid tumor patients. Currently, no instrument exists that measures both cancer-related symptoms and the neurologic symptoms that are unique to persons with primary brain tumors (PBT). The aim of this study was to develop and validate an instrument to measure symptoms in patients who have PBT. A conceptual analysis of symptoms and symptom theories led to defining the symptoms experience as the perception of the frequency, intensity, distress, and meaning that occurs as symptoms are produced, perceived, and expressed. The M.D. Anderson Symptom Inventory (MDASI) measures both symptoms and how they interfere with daily functioning in patients with cancer, which is similar to the situational meaning defined in the analysis. A list of symptoms pertinent to the PBT population was added to the core MDASI and reviewed by a group of experts for validity. As a result, 18 items were added to the core MDASI (the MDASI-BT) for the next phase of instrument development, establishing validity and reliability through a descriptive, cross-sectional approach with PBT patients. Data were collected with a patient completed demographic data sheet, an investigator completed clinician checklist, and the MDASI-BT. Analysis evaluated the reliability and validity of the MDASI-BT in PBT patients. Data were obtained from 201 patients. The number of items was reduced to 22 by evaluation of symptom severity as well as cluster analysis. Regression analysis showed more than half (56%) of the variability in symptom severity was explained by the brain tumor module items. Factor analysis confirmed that the 22 item MDASI-BT measured six underlying constructs: (a) affective; (b) cognitive; (c) focal neurologic deficits; (d) constitutional symptoms; (e) treatment-related symptoms; and (f) gastrointestinal symptoms. The MDASI-BT was sensitive to disease severity and if the patient was hospitalized. The MDASI-BT is the first instrument to measure symptoms in PBT patients that has demonstrated reliability and validity. It is the first step in a program of research to evaluate the occurrence of symptoms and plan and evaluate interventions for PBT patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/significance. The scarcity of reliable and valid Spanish language instruments for health related research has hindered research with the Hispanic population. Research suggests that fatalistic attitudes are related to poor cancer screening behaviors and may be one reason for low participation of Mexican-Americans in cancer screening. This problem is of major concern because Mexican-Americans constitute the largest Hispanic subgroup in the U.S.^ Purpose. The purposes of this study were: (1) To translate the Powe Fatalism Inventory, (PFI) into Spanish, and culturally adapt the instrument to the Mexican-American culture as found along the U.S.-Mexico border and (2) To test the equivalence between the Spanish translated, culturally adapted version of the PFI and the English version of the PFI to include clarity, content validity, reading level and reliability.^ Design. Descriptive, cross-sectional.^ Methods. The Spanish language translation used a translation model which incorporates a cultural adaptation process. The SPFI was administered to 175 bilingual participants residing in a midsize, U.S-Mexico border city. Data analysis included estimation of Cronbach's alpha, factor analysis, paired samples t-test comparison and multiple regression analysis using SPSS software, as well as measurement of content validity and reading level of the SPFI. ^ Findings. A reliability estimate using Cronbach's alpha coefficient was 0.81 for the SPFI compared to 0.80 for the PFI in this study. Factor Analysis extracted four factors which explained 59% of the variance. Paired t-test comparison revealed no statistically significant differences between the SPFI and PFI total or individual item scores. Content Validity Index was determined to be 1.0. Reading Level was assessed to be less than a 6th grade reading level. The correlation coefficient between the SPFI and PFI was 0.95.^ Conclusions. This study provided strong psychometric evidence that the Spanish translated, culturally adapted SPFI is an equivalent tool to the English version of the PFI in measuring cancer fatalism. This indicates that the two forms of the instrument can be used interchangeably in a single study to accommodate reading and speaking abilities of respondents. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart development is a crucial and conserved process that is related to the major type of human birth defects. Dorsal vessel, the Drosophila heart, has been regarded as an insightful system to identify new genes and study gene functions involved in heart development. Using heart-specific GFP transgenes, I did a genetic screen for cardiogenic genes on Drosophila chromosome II. Drosophila mutants that carry chromosome II deficiencies were tested for their phenotypes of heart development. Based on the screen results, chromosome regions containing genes required for heart development were identified. Fly strains with single gene mutations located within the defined deficiency regions were tested further. Seven genes have been identified to be involved in heart development. ^ The LIM homeodomain transcription factor gene tailup (tup) was further studied for its function in heart development. Based on this study, tup is expressed in cardioblasts and pericardial cells of the heart tube, as well as in associated lymph glands and alary muscles. In depth analysis of tup mutant phenotypes demonstrated tup is required for normal development of both heart and lymph glands. Tup was shown to bind to two DNA recognition sequences in the dorsal vessel enhancer of the Hand bHLH transcription factor gene, with one site proven essential for the expression of Hand in lymph glands, pericardial cells, and Svp/Doc cardioblasts. Together, these studies demonstrate that Tup is a critical new transcription factor in dorsal vessel morphogenesis and lymph gland formation, and strongly suggest Tup is a direct regulator of the expression of Hand in these developmental processes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unicellular amoeba Dictyostelium discoideum embarks on a developmental program upon starvation. During development, extracellular oscillatory cAMP signaling orchestrates the chemotaxis-mediated aggregation of ∼105 amoebae and is required for optimal induction of so-called pulse-induced genes. This requirement for pulsatile CAMP reflects adaptation of the cAMP-receptor-mediated pathways that regulate these genes. Through examination of a collection of pulse-induced genes, we defined two distinct gene classes based on their induction kinetics and the impact of mutations that impair PKA signaling. The first class (represented by D2 and prtA) is highly dependent on PKA signaling, whereas the second class (represented by carA, gpaB, and acaA) is not. Analysis of expression kinetics revealed that these classes are sequentially expressed with the PKA-independent genes peaking in expression before the PKA-dependent class. Experiments with cycloheximide, an inhibitor of translation, demonstrated that the pulse induction of both classes depends on new protein synthesis early in development. carA and gpaB also exhibit pulse-independent, starvation-induced expression which, unlike their pulse induction, was found to be insensitive to cycloheximide added at the outset of starvation. This result indicates that the mechanism of starvation induction pre-exists in growing cells and is distinct from the pulse induction mechanism for these genes. In order to identify cis-acting elements that are critical for induction of carA, we constructed a GFP reporter controlled by a 914-base-pair portion of its promoter and verified that its expression was PKA-independent, pulse-inducible, and developmentally regulated like the endogenous carA gene. By a combination of truncation, internal deletion, and site-directed mutation, we defined several distinct functional elements within the carA promoter, including a 39-bp region required for pulse induction between base pairs -321 and -282 (relative to the transcription start site), a 131-bp region proximal to the start site that is sufficient for starvation induction, and two separate enhancer domains. Identification of factors that interact with these promoter elements and genetic approaches exploiting the GFP reporter described here should help complete our understanding of the mechanisms regulating these genes, including adaptation mechanisms that likely also govern chemotaxis of Dictyostelium and mammalian cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper execution of mitosis requires the accurate segregation of replicated DNA into each daughter cell. The highly conserved mitotic kinase AIR-2/Aurora B is a dynamic protein that interacts with subsets of cofactors and substrates to coordinate chromosome segregation and cytokinesis in Caenorhabdiris elegans. To identify components of the AIR-2 regulatory pathway, a genome-wide RNAi-based screen for suppressors of air-2 temperature-sensitive mutant lethality was conducted. Here, I present evidence that two classes of suppressors identified in this screen are bona fide regulators of the AIR-2 kinase. The strongest suppressor cdc-48.3, encodes an Afg2/Spaf-related Cdc48-like AAA+ ATPase that regulates AIR-2 kinase activity and stability during C. elegans embryogenesis. Loss of CDC-48.3 suppresses the lethality of air-2 mutant embryos, marked by the restoration of the dynamic behavior of AIR-2 and rescue of chromosome segregation and cytokinesis defects. Loss of CDC-48.3 leads to mitotic delays and abnormal accumulation of AIR-2 during late telophase/mitotic exit. In addition, AIR-2 kinase activity is significantly upregulated from metaphase through mitotic exit in CDC-48.3 depleted embryos. Inhibition of the AIR-2 kinase is dependent on (1) a direct physical interaction between CDC-48.3 and AIR-2, and (2) CDC-48.3 ATPase activity. Importantly, the increase in AIR-2 kinase activity does not correlate with the stabilization of AIR-2 in late mitosis. Hence, CDC-48.3 is a bi-functional inhibitor of AIR-2 that is likely to act via distinct mechanisms. The second class of suppressors consists of psy-2/smk-1 and pph-4.1, which encode two components of the conserved PP4 phosphatase complex that is essential for spindle assembly, chromosome segregation, and overall mitotic progression. AIR-2 and its substrates are likely to be targets of this complex since mitotic AIR-2 kinase activity is significantly increased during mitosis when either PSY-2/SMK-1 or PPH-4.l is depleted. Altogether, this study demonstrates that during the C. elegans embryonic cell cycle, regulators including the CDC-48.3 ATPase and PP4 phosphatase complex interact with and control the kinase activity, targeting behavior and protein stability of the Aurora B kinase to ensure accurate and timely progression of mitosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The purpose of this study was to identify the medical issues experienced by Military Working Dogs during their period of deployment in Iraq.^ Design. This study was a retrospective cross-sectional survey based on database and medical record abstraction.^ Population. Military Working Dogs (MWDs) that were deployed to Iraq at any time between 20 March 2003 and 31 December 2007 were the inclusive population of interest. Seven hundred ninety-five (795) MWDs were identified as having been deployed to Iraq during the inclusive dates. Four hundred ninety-six (496) MWDs were identified that had medical events during the deployment period. ^ Procedures. Eligible MWDs were identified through several sources, to include database query, medical record abstraction questionnaire, and medical record abstraction. Demographic information collected for each MWD included tattoo, name, age, gender, breed, Branch of Service, and duty certification. Information on each veterinary/medical clinical event (VCE) was collected. This information was coded, and data entered into a database for organization. Frequency and prevalence information were determined for each category of VCE.^ Results. The top four VCEs experienced by MWDs while deployed in Iraq were gastrohepatic, dermatologic, traumatic injury, and appendicular musculoskeletal issues.^ Conclusions. Training, equipment, and supplies for veterinary personnel who care for the deployed MWDs should be tailored accordingly to suit the identified medical needs of the MWDs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Borrelia burgdorferi is the etiological agent of Lyme disease, the most common tick-borne disease in the United States. Although the most frequently reported symptom is arthritis, patients can also experience severe cardiac, neurologic, and dermatologic abnormalities. The identification of virulence determinants in infectious B. burgdorferi strains has been limited by their slow growth rate, poor transformability, and general lack of genetic tools. The present study demonstrates the use of transposon mutagenesis for the identification of infectivity-related factors in infectious B. burgdorferi, examines the potential role for chemotaxis in mammalian infection, and describes the development of a novel method for the analysis of recombination events at the Ids antigenic variation locus. A pool of Himar1 mutants was isolated using an infectious B. burgdorferi clone and the transposon vector pMarGent. Clones exhibiting reduced infectivity in mice possessed insertions in virulence determinants putatively involved in host survival and dissemination. These results demonstrated the feasibility of extensive transposon mutagenesis studies for the identification of additional infectivity-related factors. mcp-5 mutants were chosen for further study to determine the role of chemotaxis during infection. Animal studies indicated that mcp-5 mutants exhibited a reduced infectivity potential, and suggested a role for mcp-5 during the early stages of infection. An in vitro phenotype for an mcp-5 mutant was not detected. Genetic complementation of an mcp-5 mutant resulted in restoration of Mcp-5 expression in the complemented clone, as demonstrated by western blotting, but the organisms were not infectious in mice. We believe this result is a consequence of differences in expression between genes located on the linear chromosome and genes present on the circular plasmid used for trans-complementation. Overall, this work implicates mcp-5 as an important determinant of mammalian infectivity. Finally, the development of a computer-assisted method for the analysis of recombination events occurring at the B. burgdorferi vls antigenic variation locus has proven highly valuable for the detailed examination of vls gene conversion. The studies described here provide evidence for the importance of chemotaxis during infection in mice and demonstrate advances in both genetic and computational approaches for the further characterization of the Lyme disease spirochete. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aortic aneurysms and dissections are the 15th most common cause of death in the United States. Genetic factors contribute to the pathogenesis of thoracic aortic aneurysms and dissections (TAAD). Currently, six loci and four genes have been identified for familial TAAD. Notably, mutations in smooth muscle cell (SMC) contractile genes, ACTA2 and MYH11, are responsible for 15% of familial TAAD, suggesting that proper SMC contraction is important for normal aorta function. Therefore, we hypothesize that mutations in other genes encoding SMC contractile proteins also cause familial TAAD. ^ To test this hypothesis, we used a candidate gene approach to identify causative mutations in SMC contractile genes for familial TAAD. Sequencing DNA in 80 TAAD patients from unrelated families, we identified putative mutations in eight contractile genes. We chose myosin light chain kinase (MLCK ) S1759P for further study for the following reasons: (1) Serine 1759 is conserved between vertebrates and invertebrates. (2) S1759P is predicted to be functionally deleterious by bioinformatics. (3) Low blood pressure is observed in SMC-selective MLCK-deficient mice. ^ In the presence of Ca2+/Calmodulin (CaM), MLCK containing CaM binding and kinase domains are activated to phosphorylate myosin light chain, thereby initiate SMC contraction. The CaM binding sequence of MLCK forms an α-helix structure required for CaM binding. MLCK Serine 1759 is located within the CaM binding domain. S1759P is predicted to decrease the α-helix composition in the CaM binding domain. Hence, we hypothesize that MLCK mutations cause TAAD through disturbing CaM binding and MLCK activity. ^ We further sequenced MLCK in DNA samples from additional 86 probands with familial TAAD. Two more mutations, MLCK A1754T and R1480Stop, were identified, supporting that MLCK mutations cause familial TAAD. ^ To define whether MLCK mutations disrupted CaM binding and MLCK activity, we performed co-immunoprecipitation and kinase assays. Decreased CaM binding and kinase activity was detected in A1754T and S1759P. Moreover, R1480Stop is predicted to truncate kinase and CaM binding domains. We conclude that MLCK mutations disrupt CaM binding and MLCK activity. ^ Collectively, our study is first to show mutations in genes regulating SMC contraction cause TAAD. This finding further highlights the importance of SMC contraction in maintaining aorta function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.