Identification and characterization of virulence determinants in the Lyme disease spirochete Borrelia burgdorferi
Data(s) |
01/01/2009
|
---|---|
Resumo |
Borrelia burgdorferi is the etiological agent of Lyme disease, the most common tick-borne disease in the United States. Although the most frequently reported symptom is arthritis, patients can also experience severe cardiac, neurologic, and dermatologic abnormalities. The identification of virulence determinants in infectious B. burgdorferi strains has been limited by their slow growth rate, poor transformability, and general lack of genetic tools. The present study demonstrates the use of transposon mutagenesis for the identification of infectivity-related factors in infectious B. burgdorferi, examines the potential role for chemotaxis in mammalian infection, and describes the development of a novel method for the analysis of recombination events at the Ids antigenic variation locus. A pool of Himar1 mutants was isolated using an infectious B. burgdorferi clone and the transposon vector pMarGent. Clones exhibiting reduced infectivity in mice possessed insertions in virulence determinants putatively involved in host survival and dissemination. These results demonstrated the feasibility of extensive transposon mutagenesis studies for the identification of additional infectivity-related factors. mcp-5 mutants were chosen for further study to determine the role of chemotaxis during infection. Animal studies indicated that mcp-5 mutants exhibited a reduced infectivity potential, and suggested a role for mcp-5 during the early stages of infection. An in vitro phenotype for an mcp-5 mutant was not detected. Genetic complementation of an mcp-5 mutant resulted in restoration of Mcp-5 expression in the complemented clone, as demonstrated by western blotting, but the organisms were not infectious in mice. We believe this result is a consequence of differences in expression between genes located on the linear chromosome and genes present on the circular plasmid used for trans-complementation. Overall, this work implicates mcp-5 as an important determinant of mammalian infectivity. Finally, the development of a computer-assisted method for the analysis of recombination events occurring at the B. burgdorferi vls antigenic variation locus has proven highly valuable for the detailed examination of vls gene conversion. The studies described here provide evidence for the importance of chemotaxis during infection in mice and demonstrate advances in both genetic and computational approaches for the further characterization of the Lyme disease spirochete. ^ |
Identificador |
http://digitalcommons.library.tmc.edu/dissertations/AAI3367964 |
Idioma(s) |
EN |
Publicador |
DigitalCommons@The Texas Medical Center |
Fonte |
Texas Medical Center Dissertations (via ProQuest) |
Palavras-Chave | #Biology, Molecular|Biology, Genetics|Biology, Microbiology |
Tipo |
text |