902 resultados para fuzzy vault, multiple biometrics, biometric cryptosystem, biometrics and cryptography
Resumo:
One of the overarching questions in the field of infant perceptual and cognitive development concerns how selective attention is organized during early development to facilitate learning. The following study examined how infants' selective attention to properties of social events (i.e., prosody of speech and facial identity) changes in real time as a function of intersensory redundancy (redundant audiovisual, nonredundant unimodal visual) and exploratory time. Intersensory redundancy refers to the spatially coordinated and temporally synchronous occurrence of information across multiple senses. Real time macro- and micro-structural change in infants' scanning patterns of dynamic faces was also examined. ^ According to the Intersensory Redundancy Hypothesis, information presented redundantly and in temporal synchrony across two or more senses recruits infants' selective attention and facilitates perceptual learning of highly salient amodal properties (properties that can be perceived across several sensory modalities such as the prosody of speech) at the expense of less salient modality specific properties. Conversely, information presented to only one sense facilitates infants' learning of modality specific properties (properties that are specific to a particular sensory modality such as facial features) at the expense of amodal properties (Bahrick & Lickliter, 2000, 2002). ^ Infants' selective attention and discrimination of prosody of speech and facial configuration was assessed in a modified visual paired comparison paradigm. In redundant audiovisual stimulation, it was predicted infants would show discrimination of prosody of speech in the early phases of exploration and facial configuration in the later phases of exploration. Conversely, in nonredundant unimodal visual stimulation, it was predicted infants would show discrimination of facial identity in the early phases of exploration and prosody of speech in the later phases of exploration. Results provided support for the first prediction and indicated that following redundant audiovisual exposure, infants showed discrimination of prosody of speech earlier in processing time than discrimination of facial identity. Data from the nonredundant unimodal visual condition provided partial support for the second prediction and indicated that infants showed discrimination of facial identity, but not prosody of speech. The dissertation study contributes to the understanding of the nature of infants' selective attention and processing of social events across exploratory time.^
Phosphorus Biogeochemistry and the Impact of Phosphorus Enrichment: Why Is the Everglades so Unique?
Resumo:
The Florida Everglades is extremely oligotrophic and sensitive to small increases in phosphorus (P) concentrations. P enrichment is one of the dominant anthropogenic impacts on the ecosystem and is therefore a main focus of restoration efforts. In this review, we synthesize research on P biogeochemistry and the impact of P enrichment on ecosystem structure and function in the Florida Everglades. There are clear patterns of increased P concentrations and altered structure and processes along nutrient-enrichment gradients in the water, periphyton, soils, macrophytes, and consumers. Periphyton, an assemblage of algae, bacteria, and associated microfauna, is abundant and has a large influence on phosphorus cycling in the Everglades. The oligotrophic Everglades is P-starved, has lower P concentrations and higher nitrogen–phosphorus (N:P) ratios, and has oxidized to only slightly reduced soil profiles compared to other freshwater wetland ecosystems. Possible general causes and indications of P limitation in the Everglades and other wetlands include geology, hydrology, and dominance of oxidative microbial nutrient cycling. The Everglades may be unique with respect to P biogeochemistry because of the multiple causes of P limitation and the resulting high degree of limitation.
Resumo:
Manystudies have been conducted about hotel attributesrelated tothehotel choice decision as a part ofacustomer’s pre- purchase behavior(Dolnicar&Otter, 2003). Althoughit iscritical for hotel managerstounderstand post-trip behavior because such behaviorsmaydirectlyinfluence their futurebehavior, therearefew researchstudieswhich examine hotel attributesrelated to acustomer’spost-trip behavior.This studyteststhe relationship between leisure traveler’shotel attribute satisfaction and overall satisfaction in the post-trip behaviorperspectiveina hotel setting andexaminestherelative impactofhotel attributesatisfaction in influencing overall satisfaction. Multiple regressionwas used totestthe relationship and hotel attribute satisfaction isan important antecedent tooverall satisfaction. Theoretical and practical implications ofthe studyare discussed.
Resumo:
This study examined differences in cultural competency levels between undergraduate and graduate nursing students (age, ethnicity, gender, language at home, education level, program standing, program track, diversity encounters, and previous diversity training). Participants were 83% women, aged 20 to 62; 50% Hispanic/Latino; with a Bachelor of Science in Nursing (n = 82) and a Master of Science in Nursing (n = 62). Degrees included high school diplomas, associate/diplomas, bachelors' degrees in or out of nursing, and medical doctorate degrees from outside the United States. Students spoke English (n = 82) or Spanish ( n = 54). The study used a cross-sectional design guided by the three-dimensional cultural competency model. The Cultural Competency Assessment (CCA) tool is composed of two subscales: Cultural Awareness and Sensitivity (CAS) and Culturally Competent Behaviors (CCB). Multiple regressions, Pearson's correlations, and ANOVAs determined relationships and differences among undergraduate and graduate students. Findings showed significant differences between undergraduate and graduate nursing students in CAS, p <.016. Students of Hispanic/White/European ethnicity scored higher on the CAS, while White/non-Hispanic students scored lower on the CAS, p < .05. One-way ANOVAs revealed cultural competency differences by program standing (grade-point averages), and by program tracks, between Master of Science in Nursing Advanced Registered Nurse Practitioners and both Traditional Bachelor of Science in Nursing and Registered Nurse-Bachelor of Science in Nursing. Univariate analysis revealed that higher cultural competency was associated with having previous diversity training and participation in diversity training as continuing education. After controlling for all predictors, multiple regression analysis found program level, program standing, and diversity training explained a significant amount of variance in overall cultural competency (p = .027; R2 = .18). Continuing education is crucial in achieving students' cultural competency. Previous diversity training, graduate education, and higher grade-point average were correlated with higher cultural competency levels. However, increased diversity encounters were not associated with higher cultural competency levels.^
Resumo:
Many firms from emerging markets flocked to developed countries at high cost with hopes of acquiring strategic assets that are difficult to obtain in home countries. Adequate research has focused on the motivations and strategies of emerging country firms' (ECFs') internationalization, while limited studies have explored their survival in advanced economies years after their venturing abroad. Due to the imprinting effect of home country institutions that inhibit their development outside their home market, ECFs are inclined to hire executives with international background and affiliate to world-wide organizations for the purpose of linking up with the global market, embracing multiple perspectives for strategic decisions, and absorbing the knowledge of foreign markets. However, the effects of such orientation on survival are under limited exploration. Motivated by the discussion above, I explore ECFs' survival and stock performance in a developed country (U.S.). Applying population ecology, signaling theory and institutional theory, the dissertation investigates the characteristics of ECFs that survived in the developed country (U.S.), tests the impacts of global orientation on their survival, and examines how global-oriented activities (i.e. joining United Nations Global Compact) affect their stock performance. The dissertation is structured in the form of three empirical essays. The first essay explores and compares different characteristics of ECFs and developed country firms (DCFs) that managed to survive in the U.S. The second essay proposes the concept of global orientation, and tests its influences on ECFs' survival. Employing signaling theory and institutional theory, the third essay investigates stock market reactions to announcements of United Nation Global Compact (UNGC) participation. The dissertation serves to explore the survival of ECFs in the developed country (U.S.) by comparison with DCFs, enriching traditional theories by testing non-traditional arguments in the context of ECFs' foreign operation, and better informing practitioners operating ECFs about ways of surviving in developed countries and improving stockholders' confidence in their future growth.
Resumo:
Manystudies have been conducted about hotel attributesrelated tothehotel choice decision as a part ofacustomer’s pre- purchase behavior(Dolnicar&Otter, 2003). Althoughit iscritical for hotel managerstounderstand post-trip behavior because such behaviorsmaydirectlyinfluence their futurebehavior, therearefew researchstudieswhich examine hotel attributesrelated to acustomer’spost-trip behavior.This studyteststhe relationship between leisure traveler’shotel attribute satisfaction and overall satisfaction in the post-trip behaviorperspectiveina hotel setting andexaminestherelative impactofhotel attributesatisfaction in influencing overall satisfaction. Multiple regressionwas used totestthe relationship and hotel attribute satisfaction isan important antecedent tooverall satisfaction. Theoretical and practical implications ofthe studyare discussed.
Resumo:
Institutions have implemented many campus interventions to address student persistence/retention, one of which is Early Warning Systems (EWS). However, few research studies show evidence of interventions that incorporate noncognitive factors/skills, and psychotherapy/psycho-educational processes in the EWS. A qualitative study (phenomenological interview and document analysis) of EWS at both a public and private 4-year Florida university was conducted to explore EWS through the eyes of the administrators of the ways administrators make sense of students' experiences and the services they provide and do not provide to assist students. Administrators' understanding of noncognitive factors and the executive skills subset and their contribution to retention and the executive skills development of at-risk students were also explored. Hossler and Bean's multiple retention lenses theory/paradigms and Perez's retention strategies were used to guide the study. Six administrators from each institution who oversee and/or assist with EWS for first time in college undergraduate students considered academically at-risk for attrition were interviewed. Among numerous findings, at Institution X: EWS was infrequently identified as a service, EWS training was not conducted, numerous cognitive and noncognitive issues/deficits were identified for students, and services/critical departments such as EWS did not work together to share students' information to benefit students. Assessment measures were used to identify students' issues/deficits; however, they were not used to assess, track, and monitor students' issues/deficits. Additionally, the institution's EWS did address students' executive skills function beyond time management and organizational skills, but did not address students' psychotherapy/psycho-educational processes. Among numerous findings, at Institution Y: EWS was frequently identified as a service, EWS training was not conducted, numerous cognitive and noncognitive issues/deficits were identified for students, and services/critical departments such as EWS worked together to share students' information to benefit students. Assessment measures were used to identify, track, and monitor students' issues/deficits; however, they were not used to assess students' issues/deficits. Additionally, the institution's EWS addressed students' executive skills function beyond time management and organizational skills, and psychotherapy/psycho-educational processes. Based on the findings, Perez's retention strategies were not utilized in EWS at Institution X, yet were collectively utilized in EWS at Institution Y, to achieve Hossler and Bean's retention paradigms. Future research could be designed to test the link between engaging in the specific promising activities identified in this research (one-to-one coaching, participation in student success workshops, academic contracts, and tutoring) and student success (e.g., higher GPA, retention). Further, because this research uncovered some concern with how to best handle students with physical and psychological disabilities, future research could link these same promising strategies for improving student performance for example among ADHD students or those with clinical depression.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
This study explored the relationship between workplace discrimination climate on team effectiveness through three serial mediators: collective value congruence, team cohesion, and collective affective commitment. As more individuals of marginalized groups diversify the workforce and as more organizations move toward team-based work (Cannon-Bowers & Bowers, 2010), it is imperative to understand how employees perceive their organization’s discriminatory climate as well as its effect on teams. An archival dataset consisting of 6,824 respondents was used, resulting in 332 work teams with five or more members in each. The data were collected as part of an employee climate survey administered in 2011 throughout the United States’ Department of Defense. The results revealed that the indirect effect through M1 (collective value congruence) and M2 (team cohesion) best accounted for the relationship between workplace discrimination climate (X) and team effectiveness (Y). Meaning, on average, teams that reported a greater climate for workplace discrimination also reported less collective value congruence with their organization (a1 = -1.07, p < .001). With less shared perceptions of value congruence, there is less team cohesion (d21 = .45, p < .001), and with less team cohesion there is less team effectiveness (b2 = .57, p < .001). In addition, because of theoretical overlap, this study makes the case for studying workplace discrimination under the broader construct of workplace aggression within the I/O psychology literature. Exploratory and confirmatory factor analysis found that workplace discrimination based on five types of marginalized groups: race/ethnicity, gender, religion, age, and disability was best explained by a three-factor model, including: career obstruction based on age and disability bias (CO), verbal aggression based on multiple types of bias (VA), and differential treatment based on racial/ethnic bias (DT). There was initial support to claim that workplace discrimination items covary not only based on type, but also based on form (i.e., nonviolent aggressive behaviors). Therefore, the form of workplace discrimination is just as important as the type when studying climate perceptions and team-level effects. Theoretical and organizational implications are also discussed.
Resumo:
The present study assessed the effectiveness of the Cognitive Interview (CI) in a multiple-testing situation. One-hundred and eighty-two undergraduate psychology students viewed a short film clip depicting an automobile accident. Subsequently, the subjects were interviewed twice using either the CI or standard interviewing technique. In both instances, subjects who received the CI recalled more accurate information (m=32.30 at Time 1 and m=30.51 at Time 2) than subjects who received the standard interview (m=18.14 at Time 1 and m=18.38 at Time 2). There was no effect of type of interview at Time 1 on amount recalled at Time 2. This research has implications not only for judicial fact-finders, but also for further researchers interested in the CI procedure.
Resumo:
The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.
Resumo:
Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications
Resumo:
Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats.
Resumo:
This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.
This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system.
Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity.
Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.
Resumo:
Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications.
The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications.
Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements.
Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.