936 resultados para flame suppression
Resumo:
Rationale: Nonadherence to inhaled corticosteroid therapy (ICS) is a major contributor to poor control in difficult asthma, yet it is challenging to ascertain. Objectives: Identify a test for nonadherence using fractional exhaled nitric oxide (FENO) suppression after directly observed inhaled corticosteroid (DOICS) treatment. Methods: Difficult asthma patients with an elevated FENO (>45 ppb) were recruited as adherent (ICS prescription filling >80%) or nonadherent (filling <50%). They received 7 days of DOICS (budesonide 1,600 µg) and a test for nonadherence based on changes in FENO was developed. Using this test, clinic patients were prospectively classified as adherent or nonadherent and this was then validated against prescription filling records, prednisolone assay, and concordance interview. Measurements and Main Results: After 7 days of DOICS nonadherent (n = 9) compared with adherent subjects (n = 13) had a greater reduction in FENO to 47 ± 21% versus 79 ± 26% of baseline measurement (P = 0.003), which was also evident after 5 days (P = 0.02) and a FENO test for nonadherence (area under the curve = 0.86; 95% confidence interval, 0.68-1.00) was defined. Prospective validation in 40 subjects found the test identified 13 as nonadherent; eight confirmed nonadherence during interview (three of whom had excellent prescription filling but did not take medication), five denied nonadherence, two had poor inhaler technique (unintentional nonadherence), and one also denied nonadherence to prednisolone despite nonadherent blood level. Twenty-seven participants were adherent on testing, which was confirmed in 21. Five admitted poor ICS adherence but of these, four were adherent with oral steroids and one with omalizumab. Conclusions: FENO suppression after DOICS provides an objective test to distinguish adherent from nonadherent patients with difficult asthma. Clinical trial registered with www.clinicaltrials.gov (NCT 01219036). Copyright © 2012 by the American Thoracic Society.
Resumo:
Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV) infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA - memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA - memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression. © 2012 de Vries et al.
Resumo:
IFN-ß, IL-27, and IL-10 have been shown to exert a range of similar immunoregulatory effects in murine and human experimental systems, particularly in Th1- and Th17-mediated models of autoimmune inflammatory disease. In this study we sought to translate some of our previous findings in murine systems to human in vitro models and delineate the interdependence of these different cytokines in their immunoregulatory effects. We demonstrate that human IL-27 upregulates IL-10 in T cell-activated PBMC cultures and that IFN-ß drives IL-27 production in activated monocytes. IFN-ß-driven IL-27 is responsible for the upregulation of IL-10, but not IL-17 suppression, by IFN-ß in human PBMCs. Surprisingly, IL-10 is not required for the suppression of IL-17 by either IL-27 or IFN-ß in this model or in de novo differentiating Th17 cells, nor is IL-27 signaling required for the suppression of experimental autoimmune encephalomyelitis (EAE) by IFN-ß in vivo. Furthermore, and even more surprisingly, IL-10 is not required for the suppression of Th17-biased EAE by IL-27, in sharp contrast to Th1-biased EAE. In conclusion, IFN-ß and IL-27 both induce human IL-10, both suppress human Th17 responses, and both suppress murine EAE. However, IL-27 signaling is not required for the therapeutic effect of IFN-ß in EAE. Suppression of Th17-biased EAE by IL-27 is IL-10-independent, in contrast to its mechanism of action in Th1-biased EAE. Taken together, these findings delineate a complex set of interdependent and independent immunoregulatory mechanisms of IFN-ß, IL-27, and IL-10 in human experimental models and in murine Th1- and Th17-driven autoimmunity.
Resumo:
Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2a (eIF2a) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock-induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2a phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.
Resumo:
A two-dimensional numerical study of the expansion of a dense plasma through a more rarefied one is reported. The electrostatic ion-acoustic shock, which is generated during the expansion, accelerates the electrons of the rarefied plasma inducing a superthermal population which reduces electron thermal anisotropy. The Weibel instability is therefore not triggered and no self-generated magnetic fields are observed, in contrast with published theoretical results dealing with plasma expansion into vacuum. © The Author(s) 2013.
Resumo:
Background: Fluticasone propionate was introduced in 1993 in the UK as a potentially safer inhaled corticosteroid than those already in use. The efficacy and safety of fluticasone has been established at recommended doses of 200 µg/day, but not at the higher doses that are often used.
Methods: Growth retardation was observed in six severely asthmatic children after introduction of high-dose fluticasone propionate treatment (dry powder). Assessment of cortisol response was by insulin-induced hypoglycaemia in three cases, by short tetracosactrin test in two, and by low-dose tetracosactrin and 24-hour urinary cortisol/creatinine ratio in one.
Findings: Six children with growth retardation noted after treatment with high-dose fluticasone propionate were found to have adrenal suppression. In one case the growth rate and cortisol response returned to normal 9 months after the fluticasone dose was reduced to 500 µg/day.
Interpretation: When high doses of fluticasone propionate are used, growth may be retarded and adrenal suppression may occur.
Resumo:
This paper investigates the use of plug-in parking lots (SmartPark) as integral energy storage to improve small-signal stability using plug-in electric vehicles (PEV). The paper establishes the Phillips-Heffron model of a power system for a SmartPark solution. Based on this model, SmartPark-based stabilisers have been designed based using phase compensation to improve power system oscillation stability. The effectiveness of stabilisation superimposed on the active and reactive power regulators is verified by simulations obtained from a multi-machine power system model with SmartPark and a large-scale wind farm inclusion.
Resumo:
Wound healing, angiogenesis and hair follicle maintenance are often impaired in the skin of diabetic patients, but the pathogenesis has not been well understood. Here, we report that circulation levels of kallistatin, a member of the serine proteinase inhibitor (SERPIN) superfamily with anti-angiogenic activities, were elevated in Type 2 diabetic patients with diabetic vascular complications. To test the hypothesis that elevated kallistatin levels could contribute to a wound healing deficiency via inhibition of Wnt/β-catenin signaling, we generated kallistatin-transgenic (KS-TG) mice. KS-TG mice had reduced cutaneous hair follicle density, microvascular density, and panniculus adiposus layer thickness as well as altered skin microvascular hemodynamics and delayed cutaneous wound healing. Using Wnt reporter mice, our results showed that Wnt/β-catenin signaling is suppressed in dermal endothelium and hair follicles in KS-TG mice. Lithium, a known activator of β-catenin via inhibition of glycogen synthase kinase-3β, reversed the inhibition of Wnt/β-catenin signaling by kallistatin and rescued the wound healing deficiency in KS-TG mice. These observations suggest that elevated circulating anti-angiogenic serpins in diabetic patients may contribute to impaired wound healing through inhibition of Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling, at a level downstream of Wnt receptors, may ameliorate the wound healing deficiency in diabetic patients.Journal of Investigative Dermatology accepted article preview online, 24 January 2014. doi:10.1038/jid.2014.40.
Resumo:
Social scientific work on the suppression, mitigation or denial of prejudiced attitudes has tended to focus on the strategic self-presentation and self-monitoring undertaken by individual social actors on their own behalf. In this paper, we argue that existing perspectives might usefully be extended to incorporate three additional considerations. First, that social actors may, on some occasions, act to defend not only themselves, but also others from charges of prejudice. Second, that over the course of any social encounter, interactants may take joint responsibility for policing conversation and for correcting and suppressing the articulation of prejudiced talk. Third, that a focus on the dialogic character of conversation affords an appreciation of the ways in which the status of any particular utterance, action or event as 'racist' or 'prejudiced' may constitute a social accomplishment. Finally, we note the logical corollary of these observations - that in everyday life, the occurrence of 'racist discourse' is likely to represent a collaborative accomplishment, the responsibility for which is shared jointly between the person of the speaker and those other co-present individuals who occasion, reinforce or simply fail to suppress it.
Resumo:
Solar-driven water splitting to produce hydrogen may be an ideal solution for global energy and environment issues. Among the various photocatalytic systems, platinum has been widely used to co-catalyse the reduction of protons in water for hydrogen evolution. However, the undesirable hydrogen oxidation reaction can also be readily catalysed by metallic platinum, which limits the solar energy conversion efficiency in artificial photosynthesis. Here we report that the unidirectional suppression of hydrogen oxidation in photocatalytic water splitting can be fulfilled by controlling the valence state of platinum; this platinum-based cocatalyst in a higher oxidation state can act as an efficient hydrogen evolution site while suppressing the undesirable hydrogen back-oxidation. The findings in this work may pave the way for developing other high-efficientcy platinum-based catalysts for photocatalysis, photoelectrochemistry, fuel cells and water-gas shift reactions.
Resumo:
In Holcus lanatus L. phosphate and arsenate are taken up by the same transport system. Short-term uptake kinetics of the high affinity arsenate transport system were determined in excised roots of arsenate-tolerant and non-tolerant genotypes. In tolerant plants the Vmax of ion uptake in plants grown in phosphate-free media was decreased compared to non-tolerant plants, and the affinity of the uptake system was lower than in the non-tolerant plants. Both the reduction in Vmax and the increase in Km led to reduced arsenate influx into tolerant roots. When the two genotypes were grown in nutrient solution containing high levels of phosphate, there was little change in the uptake kinetics in tolerant plants. In non-tolerant plants, however, there was a marked decrease in the Vmax to the level of the tolerant plants but with little change in the Km. This suggests that the low rate of arsenate uptake over a wide range of differing root phosphate status is due to loss of induction of the synthesis of the arsenate (phosphate) carrier. © 1992 Oxford University Press.
Resumo:
The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.