885 resultados para fibra de coco


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimulus encouraging the production and consumption of biodiesel favors the policy of pre-serving the environment, contributing to the reduction of greenhouse gas reducing climate change. The current trend of research in this field focuses on improving these processes with the use of heterogeneous catalysts, seeing has significant advantages such as: low contamination of products, ease of separation of the catalyst from the reaction medium, possibili-ty of reuse of the catalyst, decreased corrosion problems. The objective of this research was to optimize the synthesis of AlSBA-15 for the production of biodiesel through transesterification process via ethyl route. For the optimization of hydrothermal synthesis of type AlSBA-15 catalyst has assembled a 23 factorial experimental matrix with eleven trials. The stoichiometric amounts of starting materials were varied according to different ratios Si / Al which is a factor in the experimental design, in addition to the time and temperature of aging of the synthesis gel. The material showed the best results of characterization (SBET = 591.7 (m2 / g), Vp = 0.83 (cm3 / g), Dp = 5.59 (nm), w = 6.48 (nm) was synthesized at 100 ° C for 24 hours, with a ratio Si / Al = 10.This material was applied as a heterogeneous catalyst in the reaction of ethyl transesterification as raw coconut oil in natura. Coconut oil presented suitable for obtaining biodiesel via ethyl route.The visual aspects and physical-chemical characteristics of the reaction products show that AlSBA-15 catalyst favored the reaction. According to physical-chemical analysis the order of oxidative stability of the product of the transesterification reaction was: catalytic reaction at 1500 ° C> non-catalytic reaction at 100 ° C> 100 ° C catalytic> catalytic reaction at 200 ° C Reaction. The results of oxidative stability and kinematic viscosity shows that the biodiesel produced in the catalytic sandblasting held at 150 ° C which was maintained within the ABNT NBR 7148, ABNT NBR 10441 and EN 14112.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to demonstrate the feasibility of a ceramic composite containing fiber in the rubber manufacturing interlocking blocks. Gravel, sand, cement, rubber and fiber: the processes of manufacture and assembly of blocks produced and the various formulations studied with different proportions between the constituent elements were addressed. Mechanical properties were determined for the different formulations, compressive strength, diametral compressive strength, water absorption and apparent density, obeying the rules related to each property. It was concluded that the addition of rubber fiber gave the concrete studied resistance lower than conventional concrete which can be verified on the microstructural analysis obtained by SEM, which revealed the presence of pores and the low adhesion between the fiber and the matrix compression (tire fiber / cement paste). The composite of more viable tire BCPB1 (1/2) fiber can be used in places requests as light squares, pavements, roads and other cycle as well as in the manufacture of the curb and gutter, by having compressive strength in about 20 MPa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption is a process that has become indispensable due to pollution caused by industrial activity. More economically viable adsorbents are being tested to replace the high cost of materials used. The clays can be used as adsorbents and are low cost materials, natural properties feasible for the application in the adsorption process, structural modifications are performed with ease promoting selective adsorption in these materials. The objective of this study was to synthesize and characterize adsorbents used in the adsorption of organic compounds. The adsorbents were characterized by the techniques of XRD, SEM, FTIR and TG. The results show that the studied materials have affinity to organic compounds and can be applied as adsorbents. The materials studied are viable and can be applied in the treatment of effluents contaminated in industrial scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, there is a great search for materials derived from renewable sources. The vegetable fibers as reinforcement for polymer matrixes, has been used as an alternative to replace synthetic fibres, being biodegradable and of low cost. The present work aims to develop a composite material with epoxy resin reinforced with curauá fibre with the addition of alumina trihydrate (aluminum hydroxide, Al(OH)3) as a flame retardant, which was used in proportions of 10 %, 20% and 30% of the total volume of the composite. The curauá fibers have gone through a cleaning process with an alkaline bath of sodium hydroxide (NaOH ), parallelized by hand and cut carding according to the default length . They were molded composites with fibers 30cm. Composites were molded in a Lossy Mold with unidirectional fibres in the proportion of 20% of the total volume of the composite. The composites were prepared in the Chemical Processing Laboratory of the Textile Engineering Department at UFRN. To measure the performance of the material, tests for the resistance to traction and flexion were carried out. with samples that were later analyzed in the Electronic Microscopy Apparatus (SEM ). The composites showed good mechanical properties by the addition of flame retardant and in some cases, leaving the composite more vulnerable to breakage. These mechanical results were analyzed by chi-square statistical test at the 5% significance level to check for possible differences between the composite groups. Flammability testing was conducted based on the standard Underwriters Laboratory 94 and the material showed a satisfactory result taking their average burn rate (mm / min) decreasing with increasing addition of the flame retardant composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sustainability has been evidence in the world today; organizations have sought to be more and more into this philosophy in their processes, whether products or attendance. In the present work were manufactured eco-composites with animal fiber (dog wool) that is currently discarded into the environment without any use. Project phases consisted on the initial treatment of fibers with alkaline solution (NaOH) at 0.05 mols for removal of impurities, developing methods to convert these fibers (reinforcement) blended with castor oil polyurethane (matrix) in eco-composite with different proportions (5%, 10%, 15% and 20%). Fiber properties were evaluated by analysis of SEM, XRD and FTIR. The composites were produced by compression molding with dimensions 30x30x1cm. For characterization of the composites the following tests were performed: mechanical (tensile, compression, shore hardness A) according the standards and testing water absorption, moisture regain and biodegradation. The analysis of thermal properties on fibers and composites were by TG, DSC, thermal conductivity, resistivity, heat capacity and thermal resistance. Analyzing the results of these tests, it was observed that the composite reinforced with 20% showed a better thermal performance between others composites and dimensional stability when compared to commercial thermal insulation. Also is possible to observe a balance in moisture absorption of the composite being shown with its higher absorption rate in this same sample (20%). The micrographs show the fiber interaction regions with polyurethane to fill the empty spaces. In hardness and compression testing can identify that with increasing percentage of the fiber material acquires a greater stiffness by making a higher voltage is used for forming necessary. So by the tests performed in eco-composites, the highest percentage of fiber used as reinforcement in their composition obtained a better performance compared to the remaining eco-composites, reaching values very close to the PU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work consists basically in the elaboration of an Artificial Neural Network (ANN) in order to model the composites materials’ behavior when submitted to fatigue loadings. The proposal is to develop and present a mixed model, which associate an analytical equation (Adam Equation) to the structure of the ANN. Given that the composites often shows a similar behavior when subject to float loadings, this equation aims to establish a pre-defined comparison pattern for a generic material, so that the ANN fit the behavior of another composite material to that pattern. In this way, the ANN did not need to fully learn the behavior of a determined material, because the Adam Equation would do the big part of the job. This model was used in two different network architectures, modular and perceptron, with the aim of analyze it efficiency in distinct structures. Beyond the different architectures, it was analyzed the answers generated from two sets of different data – with three and two SN curves. This model was also compared to the specialized literature results, which use a conventional structure of ANN. The results consist in analyze and compare some characteristics like generalization capacity, robustness and the Goodman Diagrams, developed by the networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to manufacture and characterize a hybrid plastic composite with the matrix isophthalic polyester resin base and having as reinforcing glass fiber and the dry endocarp of coconut (Coco nucifera Linn) in the form of particles as filler. The composite was made industrially in Tecniplas Industry and Trade LTDA. in the form of plate, and was manufactured process made by the manual lamination (Hand Lay Up). From the plate they were prepared test specimens for testing density, water absorption, uniaxial traction in dry and wet states, and testing of bending, as well as studies on the behavior of the generated fractures, macroscopic and microscopic, in mechanical tests through. All tests were performed in order to find the most viable applications the hybrid composite manufactured. The tensile and bending tests were analyzed last tensile properties, elasticity and deformation module. After the studies, it is observed that the percentage moisture absorbed was 3.03%. The presence of moisture in the tensile test meant a decrease of 19.77% from last stand, and 5.26% in the elastic modulus. For bending tests gave an average value of 69.13 MPa flexural strength. The results show the application of hybrid composite studied in lightweight structures, indoors, which require low / medium performance traction demands, and which involve flexural requests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of composite materials encompasses many different application areas. Among the composites, it is had, especially, the materials of organic origin, which have the greatest potential for biodegradability and so, have been bringing relevance and prominence in the contemporary setting of environmental preservation and sustainable development. Following this perspective of ecological appeal, it was developed a biocomposite material with natural inputs typically brazilian. This composite was made from latex (natural rubber) and carnauba fiber in different mass proportions. Formulations had varied by 5%, 10%, 15% and 20% of fiber in relation the matrix. This material has been designed aiming at application in thermal insulation systems, which requirethermal protection surfaces and/or reduction of thermal energy loss. Therefore, the composite was characterized by thermal conductivity testing, specific heat, thermal diffusivity and thermogravimetry. As has also been characterized for their physical-mechanical, by testing density, moisture content, tensile strength, hardness and scanning electron microscopy (SEM). The characterization of the material revealed that the composite presents a potential of thermal insulation higher than the natural rubber, that was used as reference. And the formulation at 15% fiber in relation the matrix showed the best performance. Thus, the composite material in question presents itself as a viable and effective alternative for new thermal insulation material design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of composite materials encompasses many different application areas. Among the composites, it is had, especially, the materials of organic origin, which have the greatest potential for biodegradability and so, have been bringing relevance and prominence in the contemporary setting of environmental preservation and sustainable development. Following this perspective of ecological appeal, it was developed a biocomposite material with natural inputs typically brazilian. This composite was made from latex (natural rubber) and carnauba fiber in different mass proportions. Formulations had varied by 5%, 10%, 15% and 20% of fiber in relation the matrix. This material has been designed aiming at application in thermal insulation systems, which requirethermal protection surfaces and/or reduction of thermal energy loss. Therefore, the composite was characterized by thermal conductivity testing, specific heat, thermal diffusivity and thermogravimetry. As has also been characterized for their physical-mechanical, by testing density, moisture content, tensile strength, hardness and scanning electron microscopy (SEM). The characterization of the material revealed that the composite presents a potential of thermal insulation higher than the natural rubber, that was used as reference. And the formulation at 15% fiber in relation the matrix showed the best performance. Thus, the composite material in question presents itself as a viable and effective alternative for new thermal insulation material design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il lavoro presentato in questa tesi è stato svolto presso il Department of Computer Science, University of Oxford, durante il mio periodo all’estero nel Computational Biology Group. Scopo del presente lavoro è stato lo sviluppo di un modello matematico del potenziale d’azione per cellule umane cardiache di Purkinje. Tali cellule appartengono al sistema di conduzione elettrico del cuore, e sono considerate molto importanti nella genesi di aritmie. Il modello, elaborato in linguaggio Matlab, è stato progettato utilizzando la tecnica delle Popolazione di Modelli, un innovativo approccio alla modellazione cellulare sviluppato recentemente proprio dal Computational Biology Group. Tale modello è stato sviluppato in 3 fasi: • Inizialmente è stato sviluppato un nuovo modello matematico di cellula umana del Purkinje cardiaco, tenendo in considerazione i modelli precedenti disponibili in letteratura e le più recenti pubblicazioni in merito alle caratteristiche elettrofisiologiche proprie della cellula cardiaca umana di Purkinje. Tale modello è stato costruito a partire dall’attuale gold standard della modellazione cardiaca ventricolare umana, il modello pubblicato da T. O’Hara e Y. Rudy nel 2011, modificandone sia le specifiche correnti ioniche che la struttura interna cellulare. • Il modello così progettato è stato, poi, utilizzato come “modello di base” per la costruzione di una popolazione di 3000 modelli, tramite la variazione di alcuni parametri del modello all’interno di uno specifico range. La popolazione così generata è stata calibrata sui dati sperimentali di cellule umane del Purkinje. A valle del processo di calibrazione si è ottenuta una popolazione di 76 modelli. • A partire dalla popolazione rimanente, è stato ricavato un nuovo modello ai valori medi, che riproduce le principali caratteristiche del potenziale d’azione di una cellula di Purkinje cardiaca umana, e che rappresenta il dataset sperimentale utilizzato nel processo di calibrazione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

v. 17, n .2, p. 164-174, abr./jun. 2016.