928 resultados para electron cooling
Resumo:
The objective of this research was to produce and characterize lipid particles (MpLs) that may be used as carriers of high amounts of hydrophilic core and evaluate the influence of the core amount on the performance of lipid microparticles. The MpLs were produced by spray cooling from solid and liquid lipid mixtures (stearic and oleic fatty acids and partly hydrogenated vegetable fat) containing glucose solution as core and soy lecithin as surfactant. The performance of MpLs was evaluated by means of the effective amount of encapsulated core, the core amount present on the surface of MpLs (superficial glucose) and the core release profile in aqueous solution. Morphological observations showed that MpLs presented spherical shape and a rugged and continuous surface, and an average diameter between 25 and 32 µm. The effective amount of encapsulated core was greater than 78% for all formulations evaluated. Larger amounts of superficial glucose were found in formulations in which more concentrated glucose solutions were used, regardless of the glucose lipid-solution ratio. The release results showed that core retention was significantly influenced by the glucose solution concentration, whereas release modulation was influenced by the glucose lipid-solution ratio.
Resumo:
Poultry carcasses have to be chilled to reduce the central breast temperatures from approximately 40 to 4 °C, which is crucial to ensure safe products. This work investigated the cooling of poultry carcasses by water immersion. Poultry carcasses were taken directly from an industrial processing plant and cooled in a pilot chiller, which was built to investigate the influence of the method and the water stirring intensity on the carcasses cooling. A simplified empiric mathematical model was used to represent the experimental results. These results indicated clearly that the understanding and quantification of heat transfer between the carcass and the cooling water is crucial to improve processes and equipment. The proposed mathematical model is a useful tool to represent the dynamics of carcasses cooling, and it can be used to compare different chiller operational conditions in industrial plants. Therefore, this study reports data and a simple mathematical tool to handle an industrial problem with little information available in the literature.
Resumo:
In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA) was used to preprocess the input data. The obtained results were: i) PCA reduced the number of input variables from twenty-five to ten; ii) the neural network structure 4-6-1 was the one with the best result; iii) PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.
Resumo:
Cooked vegetables are commonly used in the preparation of ready-to-eat foods. The integration of cooking and cooling of carrots and vacuum cooling in a single vessel is described in this paper. The combination of different methods of cooking and vacuum cooling was investigated. Integrated processes of cooking and vacuum cooling in a same vessel enabled obtaining cooked and cooled carrots at the final temperature of 10 ºC, which is adequate for preparing ready-to-eat foods safely. When cooking and cooling steps were performed with the samples immersed in boiling water, the effective weight loss was approximately 3.6%. When the cooking step was performed with the samples in boiling water or steamed, and the vacuum cooling was applied after draining the boiling water, water loss ranged between 15 and 20%, which caused changes in the product texture. This problem can be solved with rehydration using a small amount of sterile cold water. The instrumental textural properties of carrots samples rehydrated at both vacuum and atmospheric conditions were very similar. Therefore, the integrated process of cooking and vacuum cooling of carrots in a single vessel is a feasible alternative for processing such kind of foods.
Resumo:
A mathematical model previously developed to study microbial growth in food products under an isothermal environment was adapted to a time-varying temperature regime. The resulting model was applied to study the growth of Clostridium perfringens in meat products. This micro-organism is of particular relevance to public health and economy due to the loss of productivity caused by it. Results showed a similar performance of the model used compared to the Baranyi model under an isothermal situation and a slightly better performance under a non-isothermal temperature profile.
Resumo:
The search for efficient and accessible cooling systems has increased worldwide. This study aims to build and evaluate an evaporative cooling system using a water driven ejector, allowing it to be installed in places with plenty of water. The system was investigated varying the flow rate and temperature of the circulating water, temperature of the replacement water, and coefficient of performance. The best vacuum obtained was 8.5 kPa at nominal operating conditions of 4.1 ± 0.1 m³/h and 5 ± 0.5 ºC for the circulating water reaching the temperature of 9.7 ± 0.5 ºC. The pulse-like disturbance generated by replacing the cooling water at different periods of times did not result in significant affect vacuum destabilization and the temperature rise in the cooling tank. The coefficient of performance of the system at the highest thermal power of 92.27 W was 0.077, which was underestimated due to possible problems related to pump efficiency. The system evaluated under the conditions proposed can be very efficient for cooling fluids at higher temperatures, and it can be complementary to main refrigeration systems.
Resumo:
Biofilms in milk cooling tanks compromise product quality even on farms. Due to the lack of studies of this topic, this study evaluated the microbiological conditions of raw milk cooling tanks on farms and characterized the microorganisms isolated from these tanks. Samples were wiped off with sterile swabs from seven milk cooling tanks in three different points in each tank. Mesophiles and psychrotrophic counts were performed in all samples. The isolation of Pseudomonas spp., Bacillus cereus and atypical colonies formed on selective media were also performed, totalizing 297 isolates. All isolates were tested for protease and lipase production and biofilm formation. Of the total isolates, 62.9% produced protease, 55.9% produced lipase, and 50.2% produced biofilm. The most widespread genus inside the milk cooling tank was Pseudomonas since it was not possible to associate this contamination with a single sampling point in the equipment. High counts of microorganisms were found in some cooling tanks, indicating poor cleaning of the equipment and providing strong evidences of microbial biofilm presence. Moreover, it is worth mentioning the milk potential contamination with both microbial cells and their degrading enzymes, which compromises milk quality.
Resumo:
Aims: The aim of this work was to assess the ultrastructural changes, cellular proliferation, and the biofilm formation ability of F. nucleatum as defense mechanisms against the effect of HNP-1. Materials and methods: The type strain of F. nucleatum (ssp. nucleatum ATCC 25586) and two clinical strains (ssp. polymorphum AHN 9910 and ssp. nucleatum AHN 9508) were cultured and incubated with four different test concentrations of recombinant HNP-1 (1, 5, 10 and 20 µg/ml) and one control group (0 µg/ml). Bacterial pellets from each concentration were processed for TEM imaging. Planktonic growth was assessed and colony forming units (CFU) were measured to determine the cellular proliferation. Scrambled HNP-1 was used for confirmation. Results: TEM analyses revealed a decrease in the outer membrane surface corrugations and roughness of the strain AHN 9508 with increasing HNP-1 concentrations. In higher concentrations of HNP-1, the strain AHN 9910 showed thicker outer membranes with a number of associated rough vesicles attached to the outer surface. For ATCC 25586, the treated bacterial cells contained higher numbers of intracellular granules with increasing the peptide concentration. Planktonic growth of the two clinical strains were significantly enhanced (P<0.001) with gradually increased concentrations of HNP-1. None of the planktonic growth results of the 3 strains incubated with the scrambled HNP-1 was statistically significant. HNP-1 decreased the biofilm formation of the two clinical strains, AHN 9910 and 9508, significantly (P<0.01 and P<0.001; respectively). Conclusions: The present in vitro study demonstrates that F. nucleatum has the ability to withstand the lethal effects of HNP-1 even at concentrations simulating the diseased periodontium in vivo. The increase in planktonic growth could act as defense mechanisms of F. nucleatum against HNP-1.
Resumo:
In oxygenic photosynthesis, the highly oxidizing reactions of water splitting produce reactive oxygen species (ROS) and other radicals that could damage the photosynthetic apparatus and affect cell viability. Under particular environmental conditions, more electrons are produced in water oxidation than can be harmlessly used by photochemical processes for the reduction of metabolic electron sinks. In these circumstances, the excess of electrons can be delivered, for instance, to O2, resulting in the production of ROS. To prevent detrimental reactions, a diversified assortment of photoprotection mechanisms has evolved in oxygenic photosynthetic organisms. In this thesis, I focus on the role of alternative electron transfer routes in photoprotection of the cyanobacterium Synechocystis sp. PCC 6803. Firstly, I discovered a novel subunit of the NDH-1 complex, NdhS, which is necessary for cyclic electron transfer around Photosystem I, and provides tolerance to high light intensities. Cyclic electron transfer is important in modulating the ATP/NADPH ratio under stressful environmental conditions. The NdhS subunit is conserved in many oxygenic phototrophs, such as cyanobacteria and higher plants. NdhS has been shown to link linear electron transfer to cyclic electron transfer by forming a bridge for electrons accumulating in the Ferredoxin pool to reach the NDH-1 complexes. Secondly, I thoroughly investigated the role of the entire flv4-2 operon in the photoprotection of Photosystem II under air level CO2 conditions and varying light intensities. The operon encodes three proteins: two flavodiiron proteins Flv2 and Flv4 and a small Sll0218 protein. Flv2 and Flv4 are involved in a novel electron transport pathway diverting electrons from the QB pocket of Photosystem II to electron acceptors, which still remain unknown. In my work, it is shown that the flv4-2 operon-encoded proteins safeguard Photosystem II activity by sequestering electrons and maintaining the oxidized state of the PQ pool. Further, Flv2/Flv4 was shown to boost Photosystem II activity by accelerating forward electron flow, triggered by an increased redox potential of QB. The Sll0218 protein was shown to be differentially regulated as compared to Flv2 and Flv4. Sll0218 appeared to be essential for Photosystem II accumulation and was assigned a stabilizing role for Photosystem II assembly/repair. It was also shown to be responsible for optimized light-harvesting. Thus, Sll0218 and Flv2/Flv4 cooperate to protect and enhance Photosystem II activity. Sll0218 ensures an increased number of active Photosystem II centers that efficiently capture light energy from antennae, whilst the Flv2/Flv4 heterodimer provides a higher electron sink availability, in turn, promoting a safer and enhanced activity of Photosystem II. This intertwined function was shown to result in lowered singlet oxygen production. The flv4-2 operon-encoded photoprotective mechanism disperses excess excitation pressure in a complimentary manner with the Orange Carotenoid Protein-mediated non-photochemical quenching. Bioinformatics analyses provided evidence for the loss of the flv4-2 operon in the genomes of cyanobacteria that have developed a stress inducible D1 form. However, the occurrence of various mechanisms, which dissipate excitation pressure at the acceptor side of Photosystem II was revealed in evolutionarily distant clades of organisms, i.e. cyanobacteria, algae and plants.
Resumo:
The purpose of this Master´s Thesis is to develop asset management and its practices in case company. District heating and cooling systems operated by case company around Finland, Sweden, Poland and the Baltics form an enormous-sized asset base where some parts are starting to reach their end of life-cycles. Large-sized asset renewal actions are under discussion and maintenance spending is increasing. Financially justified decisions in changing business environment are needed. Asset management is one of the most important concepts for production organization which operates with capital-intensive production assets. Organizations profitability is highly dependent on assets´ performance. Such assets, like district heating and cooling systems, should be utilized as efficiently as possible within their life-cycles but also maintained and renewed optimally. In this qualitative thesis, empirical interview study was conducted to describe the current situation on how the assets are managed in the case company and to examine the readiness to implement a new, risk-based solution. Asset management revealed to be a very well-known concept. From proposed risk-based asset management point of view, several key observations were made. It was seen as a suitable solution, but further development will be needed. Based on the need and findings, several key processes and frameworks were created and also tested with a case study. Assets` condition monitoring should be improved, which would have a positive impact on event probability assessment. Risk acceptance is also a thing to be discussed further. When the evaluation becomes fluent in single investment cases, portfolio-level expansion should be considered and started. As a result, thesis proposes a solution how risk-based asset management could be performed practically in a capital-intensive case company in order to optimize the maintenance spending in a long run. Created practical framework is made universal: similar principles can be applied into multiple cases in case company but also in other energy companies. Risk-based asset management`s benefits could be utilized best in portfolio-level optimization where the capital would be invested to the most important objects from total risk point of view. Eventually, such approach would allow case company to optimize capital spending in a situation where funds are not adequate to cover all the mandatory needs and prioritization between the investment alternatives will truly be needed.
Resumo:
This master thesis presents a study on the requisite cooling of an activated sludge process in paper and pulp industry. The energy consumption of paper and pulp industry and it’s wastewater treatment plant in particular is relatively high. It is therefore useful to understand the wastewater treatment process of such industries. The activated sludge process is a biological mechanism which degrades carbonaceous compounds that are present in waste. The modified activated sludge model constructed here aims to imitate the bio-kinetics of an activated sludge process. However, due to the complicated non-linear behavior of the biological process, modelling this system is laborious and intriguing. We attempt to find a system solution first using steady-state modelling of Activated Sludge Model number 1 (ASM1), approached by Euler’s method and an ordinary differential equation solver. Furthermore, an enthalpy study of paper and pulp industry’s vital pollutants was carried out and applied to revise the temperature shift over a period of time to formulate the operation of cooling water. This finding will lead to a forecast of the plant process execution in a cost-effective manner and management of effluent efficiency. The final stage of the thesis was achieved by optimizing the steady state of ASM1.
Resumo:
The fragmentation patterns and mass spectra of some phenyl tin and -lead halide adducts with hexamethylphosphoramide are compared by subjecting them t~ electron impact and fast atom bombardment ionization in a mass spectrometer. This comparison is restricted to the metal-containing ions. Ligand-exchange mechanisms of some of the metal-containing species are explored by FAB-MS. Several moisturesensitive organo-metallics and H-bonded systems have been examined by FAB for attempted characterization, but without any success. Scavenging and trapping of water molecules by complex aggregates in solutions of quaternary ammonium fluorides and hydroxides are investigated by FAB to complement previous NMR-studies.
Resumo:
The number of P700 (the reaction centre of Photosystem I) converted to P700+, in winter rye, was determined by measuring the absorbance change at 820nm . It was found, with a single turnover flash, that thylakoids isolated from cold grown plants have a 50% greater number of P700 oxidized than thylakoids isolated from warm grown plants. Incubation of thylakoids in the dark at 35 C did not change the number of P700 oxidized. The conversion of P700 to P700+ with a single flash can be compared to a steady state rate of electron transport using a Clark electrode. The results for P700 oxidation using the absorbance change at 820 nm measure effects within the PSI complex whereas the results obtained from a Clark electrode measures steady state electron transport between the cytochrome blf complex and the PSI complex. In contrast to the results for P700 oxidation it was shown, using a Clark electrode, that both thylakoids from cold grown plants and thylakoids incubated at in the dark 35 C exhibited 50% higher rates of electron transport than thylakoids from warm grown plants. The correlation between the higher rate of steady state PSI electron transport observed in thylakoids isolated from cold grown winter rye and number of active PSI reaction centres localizes the site of the increase to the PSI reaction centre. In contrast the lack of correlation after incubation at 35 C indicates the increase in the rate of light saturated electron transport in thylakoids isolated from cold grown plants and thylakoids incubated in the dark at 35 C occur by different mechanisms.
Resumo:
Both El MS and FAB MS behavior of two groups of compounds, aryltin and ferrocene compounds, have been studied. For the aryltin compounds, the effect of substituent group position, substituent group type and ligand type on the El spectra have been explored in the El MS studies. The fragmentation mechanism has been investigated under El with linked scans, such as fragment ion scans(BJE), parent ion scans(B2JE) and constant neutral radical loss scans(B2(1-E)JE2). In the FAB MS studies, matrix optimization experiments have been carried out. The positive ion FAB MS studies focused on the effect of substituent group position, substituent group type and ligand type on the spectra. The fragmentation mechanisms of all the samples under positive ion FAB have been studied by means of the linked scans. The CA positive ion FAB fragmentation studies were also carried out for a typical sample. Negative ion FAB experiments of all the compounds have been done. And finally, the comparison of the El MS and FAB MS has been made. For ferrocenes, the studies concentrated on the fragmentation mechanism of each compound under El with linked scan techniques in the first field-free region and the applicability of positive/negative ion FAB MS to this group of compounds. The fragmentation mechanisms under positive ion FAB of those ferrocenes which can give positive ion FAB MS spectra were studied with the linked scan techniques. The CA +ve F AB fragmentation studies were carried out for a typical sample. Comparison of the E1 MS and FAB MS has been made.