989 resultados para electric impedance measurement
Resumo:
Current noninvasive techniques for the routine and frequent quantification of peripheral lymphedema in patients are total limb volume measurement (by water immersion or by circumferential measurements) and bioelectrical impedance analysis (BIA). However both of these techniques require standardizing the measurement using a contralateral measurement from the unaffected limb, Hence these techniques are essentially restricted to unilateral lymphedema. This paper describes the results from a preliminary study to investigate an alternative approach to the analysis of the data from multiple frequency BIA to produce an index of lymphedema without the need for normalization to another body segment. Twenty patients receiving surgical treatment for breast cancer were monitored prior to surgery and again after diagnosis with unilateral lymphedema. The data recorded were total limb volume, by circumferential measurements; and BIA measurements of both limbs. From these measurements total limb volumes and extracellular fluid volumes were calculated and expressed as ratios of the affected limb to that of the unaffected limb. An index of the ratio of the extracellular fluid volume to the intracellular fluid volume was determined. This ECW/ICW index was calculated for both the affected and unaffected limbs at both measurement times. Results confirmed that the established techniques of total limb volume and extracellular fluid volume normalized to the unaffected contralateral limb were accurate in the detection of lymphedema (p < 10(-6)). Comparison of the ECW/ICW index from the affected limb after diagnosis with that from the pre-surgery measurement revealed a significant (p< 10(-6)) and considerable (75%) increase. The results of this pilot study suggest that by using multiple frequency bioelectrical impedance analysis, an index of the ECW/ICW ratio can be obtained and this index appears to have an equal, or better, sensitivity, than the other techniques in detecting lymphedema. More importantly, this index does not require normalization to another body segment and can be used to detect all types of peripheral edema including both unilateral and bilateral lymphedema.
Resumo:
Improvements to the routine methods for the determination of actual acidity in suspension for acid sulfate soils (ASS) are introduced. The titratable sulfidic acidity (TSA) results using an improved peroxide-based method were compared with the theoretical acidity predicted by the chromium reducible sulfur method for 9 acid sulfate soils. The regression between these 2 measures of sulfidic acidity was highly significant, the slope of the regression line not significantly different from unity (P = 0.05) and the intercept not significantly different from zero. This contrasts with results of other workers using earlier peroxide oxidation methods, where TSA substantially underestimated the theoretical acidity predicted by reduced inorganic sulfur analysis. Comparison was made between the 2 principal measurements from the improved peroxide method (TSA and S-POS), with S-POS converted to theoretical sulfidic acidity to allow comparison. The relationship between these 2 measurements was highly significant. The effects of titration in suspension, as well as raising titration end points to pH 6.5, were investigated, principally with respect to the titratable actual acidity (TAA) result. TAA results obtained by KCl extraction were compared with those obtained using BaCl2, MgCl2, and water extraction. TAA in 1 M KCl suspensions titrated to pH 6.5 agreed well with titratable actual acidity measured using the 25-h extraction approach of the Lin et al. (2000a) BaCl2 method. Both BaCl2 and KCl solutions were ineffective at fully recovering acidity from synthetic jarosite without repeated extraction and titration. The application of correction factors for the estimation of total actual acidity in ASS is not supported by the results of this investigation. Acid sulfate soils that contain substantial quantities of jarosite or other acid-producing but relatively insoluble sulfate minerals continue to prove problematic to chemically analyse; however, an approach for estimating this component is discussed.
Resumo:
An acceleration compensated transducer was developed to enable the direct measurement of skin friction in hypervelocity impulse facilities. The gauge incorporated a measurement and acceleration element that employed direct shear of a piezoelectric ceramic. The design integrated techniques to maximize rise time and shear response while minimizing the affects of acceleration, pressure, heat transfer, and electrical interference. The arrangement resulted in a transducer natural frequency near 40 kHz. The transducer was calibrated for shear and acceleration in separate bench tests and was calibrated for pressure within an impulse facility. Uncertainty analyses identified only small experimental errors in the shear and acceleration calibration techniques. Although significant errors were revealed in the method of pressure calibration, total skin-friction measurement errors as low as +/-7-12% were established. The transducer was successfully utilized in a shock tunnel, and sample measurements are presented for flow conditions that simulate a flight Mach number near 8.
Resumo:
An improved HPLC method has been established for the measurement of harderoporphyrin (HP) in the harderian gland of rats and mice. Groups of female Wistar rats were given a single oral dose of sodium arsenite at 0, 0.5 or 5.0 mg As(III)/kg body weight, or a slurry of arsenic-contaminated soil at equivalent dose rates and the animals were sacrificed 96 h after dosing. A group of C57BL/6J female mice were chronically exposed to drinking water containing 500 mug As(V)/I of sodium arsenate ad libitum for over 2 years. Porphyrins were measured in the harderian glands of rats and mice. Our results suggest that HP and the alteration of the porphyrin profile in the harderian glands of rodents is a highly sensitive biomarker for both single sub-lethal and chronic arsenic exposure. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The isotope composition of Ph is difficult to determine accurately due to the lack of a stable normalisation ratio. Double and triple-spike addition techniques provide one solution and presently yield the most accurate measurements. A number of recent studies have claimed that improved accuracy and precision could also be achieved by multi-collector ICP-MS (MC-ICP-MS) Pb-isotope analysis using the addition of Tl of known isotope composition to Pb samples. In this paper, we verify whether the known isotope composition of Tl can be used for correction of mass discrimination of Pb with an extensive dataset for the NIST standard SRM 981, comparison of MC-ICP-MS with TIMS data, and comparison with three isochrons from different geological environments. When all our NIST SRM 981 data are normalised with one constant Tl-205/Tl-203 of 2.38869, the following averages and reproducibilities were obtained: Pb-207/Pb-206=0.91461+/-18; Pb-208/Ph-206 = 2.1674+/-7; and (PbPh)-Pb-206-Ph-204 = 16.941+/-6. These two sigma standard deviations of the mean correspond to 149, 330, and 374 ppm, respectively. Accuracies relative to triple-spike values are 149, 157, and 52 ppm, respectively, and thus well within uncertainties. The largest component of the uncertainties stems from the Ph data alone and is not caused by differential mass discrimination behaviour of Ph and Tl. In routine operation, variation of sample introduction memory and production of isobaric molecular interferences in the spectrometer's collision cell currently appear to be the ultimate limitation to better reproducibility. Comparative study of five different datasets from actual samples (bullets, international rock standards, carbonates, metamorphic minerals, and sulphide minerals) demonstrates that in most cases geological scatter of the sample exceeds the achieved analytical reproducibility. We observe good agreement between TIMS and MC-ICP-MS data for international rock standards but find that such comparison does not constitute the ultimate. test for the validity of the MC-ICP-MS technique. Two attempted isochrons resulted in geological scatter (in one case small) in excess of analytical reproducibility. However, in one case (leached Great Dyke sulphides) we obtained a true isochron (MSWD = 0.63) age of 2578.3 +/- 0.9 Ma, which is identical to and more precise than a recently published U-Pb zircon age (2579 3 Ma) for a Great Dyke websterite [Earth Planet. Sci. Lett. 180 (2000) 1-12]. Reproducibility of this age by means of an isochron we regard as a robust test of accuracy over a wide dynamic range. We show that reliable and accurate Pb-isotope data can be obtained by careful operation of second-generation MC-ICP magnetic sector mass spectrometers. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Purpose. Health promotion policy frameworks, recent theorizing, and research all emphasize understanding and mobilizing environmental influences to change particular health-related behaviors in specific settings. The workplace is a key environmental setting. The Checklist of Health Promotion Environments at Worksites (CHEW) was designed as a direct observation instrument to assess characteristics of worksite environments that are known to influence health-related behaviors. Methods. The CHEW is a 112-item checklist of workplace environment features hypothesized to be associated, both positively and negatively, with physical activity, healthy eating, alcohol consumption, and smoking. The three environmental domains assessed are (1) physical characteristics of the worksite, (2) features of the information environment, and (3) characteristics of the immediate neighborhood around the workplace. The conceptual rationale and development studies for the CHEW are described, and data from observational studies of 20 worksites are reported. Results. The data on CHEW-derived environmental attributes showed generally good reliability and identified meaningful sets of variables that plausibly may influence health-related behaviors. With the exception of one information environment attribute, intraclass correlation coefficients ranged from 0.80 to 1.00. Descriptive statistics on selected physical and information environment characteristics indicated that vending machines, showers, bulletin boards, and signs prohibiting smoking were common across worksites. Bicycle racks, visible stairways, and signs related to alcohol consumption, nutrition, and health. promotion were relatively uncommon. Conclusions. These findings illustrate the types of data on environmental attributes that can be derived, their relevance for program planning, and how they can characterize variability across worksites. The CHEW is a promising observational measure that has the potential to assess environmental influences on health behaviors and to evaluate workplace health promotion programs.
Resumo:
This paper introduces a new reconstruction algorithm for electrical impedance tomography. The algorithm assumes that there are two separate regions of conductivity. These regions are represented as eccentric circles. This new algorithm then solves for the location of the eccentric circles. Due to the simple geometry of the forward problem, an analytic technique using conformal mapping and separation of variables has been employed. (C) 2002 John Wiley Sons, Inc.
Resumo:
Introduction Bioelectrical impedance analysis (BIA) is a useful field measure to estimate total body water (TBW). No prediction formulae have been developed or validated against a reference method in patients with pancreatic cancer. The aim of this study was to assess the agreement between three prediction equations for the estimation of TBW in cachectic patients with pancreatic cancer. Methods Resistance was measured at frequencies of 50 and 200 kHz in 18 outpatients (10 males and eight females, age 70.2 +/- 11.8 years) with pancreatic cancer from two tertiary Australian hospitals. Three published prediction formulae were used to calculate TBW - TBWs developed in surgical patients, TBWca-uw and TBWca-nw developed in underweight and normal weight patients with end-stage cancer. Results There was no significant difference in the TBW estimated by the three prediction equations - TBWs 32.9 +/- 8.3 L, TBWca-nw 36.3 +/- 7.4 L, TBWca-uw 34.6 +/- 7.6 L. At a population level, there is agreement between prediction of TBW in patients with pancreatic cancer estimated from the three equations. The best combination of low bias and narrow limits of agreement was observed when TBW was estimated from the equation developed in the underweight cancer patients relative to the normal weight cancer patients. When no established BIA prediction equation exists, practitioners should utilize an equation developed in a population with similar critical characteristics such as diagnosis, weight loss, body mass index and/or age. Conclusions Further research is required to determine the accuracy of the BIA prediction technique against a reference method in patients with pancreatic cancer.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We present global and regional rates of brain atrophy measured on serially acquired T1-weighted brain MR images for a group of Alzheimer's disease (AD) patients and age-matched normal control (NC) subjects using the analysis procedure described in Part I. Three rates of brain atrophy: the rate of atrophy in the cerebrum, the rate of lateral ventricular enlargement and the rate of atrophy in the region of temporal lobes, were evaluated for 14 AD patients and 14 age-matched NC subjects. All three rates showed significant differences between the two groups, However, the greatest separation of the two groups was obtained when the regional rates were combined. This application has demonstrated that rates of brain atrophy, especially in specific regions of the brain, based on MR images can provide sensitive measures for evaluating the progression of AD. These measures will be useful for the evaluation of therapeutic effects of novel therapies for AD. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Most external assessments of cervical range of motion assess the upper and lower cervical regions simultaneously. This study investigated the within and between days reliability of the clinical method used to bias this movement to the upper cervical region, namely measuring rotation of the head and neck in a position of full cervical flexion. Measurements were made using the Fastrak measurement system and were conducted by one operator. Results indicated high levels of within and between days repeatability (range of ICC2,1 values: 0.85-0.95). The ranges of axial rotation to right and left, measured with the neck positioned in full flexion, were approximately 56% and 50%, respectively of total cervical rotation, which relates well to the proportional division of rotation in the upper and lower cervical regions. These results suggest that this method of measuring rotation would be appropriate for use in subject studies where movement dysfunction is present in the upper cervical region, such as those with cervicogenic headache. (C) 2003 Elsevier Science Ltd. All rights reserved.