1000 resultados para dynamic compilation
Resumo:
An in-situ power monitoring technique for Dynamic Voltage and Threshold scaling (DVTS) systems is proposed which measures total power consumed by load circuit using sleep transistor acting as power sensor. Design details of power monitor are examined using simulation framework in UMC 90nm CMOS process. Experimental results of test chip fabricated in AMS 0.35µm CMOS process are presented. The test chip has variable activity between 0.05 and 0.5 and has PMOS VTH control through nWell contact. Maximum resolution obtained from power monitor is 0.25mV. Overhead of power monitor in terms of its power consumption is 0.244 mW (2.2% of total power of load circuit). Lastly, power monitor is used to demonstrate closed loop DVTS system. DVTS algorithm shows 46.3% power savings using in-situ power monitor.
Resumo:
The objectives of this paper are to examine the loss of crack tip constraint in dynamically loaded fracture specimens and to assess whether it can lead to enhancement in the fracture toughness at high loading rates which has been observed in several experimental studies. To this end, 2-D plane strain finite element analyses of single edge notched (tension) specimen and three point bend specimen subjected to time varying loads are performed. The material is assumed to obey the small strain J(2) flow theory of plasticity with rate independent behaviour. The results demonstrate that a valid J-Q field exists under dynamic loading irrespective of the crack length and specimen geometry. Further, the constraint parameter Q becomes strongly negative at high loading rates, particularly in deeply cracked specimens. The variation of dynamic fracture toughness K-dc with stress intensity rate K for cleavage cracking is predicted using a simple critical stress criterion. It is found that inertia-driven constraint loss can substantially enhance K-dc for (K) over dot > 10(5) MPa rootm/s.
Resumo:
In this paper a new parallel algorithm for nonlinear transient dynamic analysis of large structures has been presented. An unconditionally stable Newmark-beta method (constant average acceleration technique) has been employed for time integration. The proposed parallel algorithm has been devised within the broad framework of domain decomposition techniques. However, unlike most of the existing parallel algorithms (devised for structural dynamic applications) which are basically derived using nonoverlapped domains, the proposed algorithm uses overlapped domains. The parallel overlapped domain decomposition algorithm proposed in this paper has been formulated by splitting the mass, damping and stiffness matrices arises out of finite element discretisation of a given structure. A predictor-corrector scheme has been formulated for iteratively improving the solution in each step. A computer program based on the proposed algorithm has been developed and implemented with message passing interface as software development environment. PARAM-10000 MIMD parallel computer has been used to evaluate the performances. Numerical experiments have been conducted to validate as well as to evaluate the performance of the proposed parallel algorithm. Comparisons have been made with the conventional nonoverlapped domain decomposition algorithms. Numerical studies indicate that the proposed algorithm is superior in performance to the conventional domain decomposition algorithms. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In-situ transmission electron microscopy (TEM) has developed rapidly over the last decade. In particular, with the inclusion of scanning probes in TEM holders, allows both mechanical and electrical testing to be performed whilst simultaneously imaging the microstructure at high resolution. In-situ TEM nanoindentation and tensile experiments require only an axial displacement perpendicular to the test surface. However, here, through the development of a novel in-situ TEM triboprobe, other surface characterisation experiments are now possible, with the introduction of a fully programmable 3D positioning system. Programmable lateral displacement control allows scratch tests to be performed at high resolution with simultaneous imaging of the changing microstructure. With the addition of repeated cyclic movements, both nanoscale fatigue and friction experiments can also now be performed. We demonstrate a range of movement profiles for a variety of applications, in particular, lateral sliding wear. The developed NanoLAB TEM triboprobe also includes a new closed loop vision control system for intuitive control during positioning and alignment. It includes an automated online calibration to ensure that the fine piezotube is controlled accurately throughout any type of test. Both the 3D programmability and the closed loop vision feedback system are demonstrated here.
Resumo:
Emerging high-dimensional data mining applications needs to find interesting clusters embeded in arbitrarily aligned subspaces of lower dimensionality. It is difficult to cluster high-dimensional data objects, when they are sparse and skewed. Updations are quite common in dynamic databases and they are usually processed in batch mode. In very large dynamic databases, it is necessary to perform incremental cluster analysis only to the updations. We present a incremental clustering algorithm for subspace clustering in very high dimensions, which handles both insertion and deletions of datapoints to the backend databases.
Resumo:
In this paper, we investigate the effect of vacuum sealing the backside cavity of a Capacitive Micromachined Ultrasonic Transducer (CMUT). The presence or absence of air inside the cavity has a marked effect upon the system parameters, such as the natural frequency, damping, and the pull-in voltage. The presence of vacuum inside the cavity of the device causes a reduction in the effective gap height which leads to a reduction in the pull-in voltage. We carry out ANSYS simulations to quantify this reduction. The presence of vacuum inside the cavity of the device causes stress stiffening of the membrane, which changes the natural frequency of the device. A prestressed modal analysis is carried out to determine the change in natural frequency due to stress stiffening. The equivalent circuit method is used to evaluate the performance of the device in the receiver mode. The lumped parameters of the device are obtained and an equivalent circuit model of the device is constructed to determine the open circuit receiving sensitivity of the device. The effect of air in the cavity is included by incorporating an equivalent compliance and an equivalent resistance in the equivalent circuit.
Resumo:
A dynamic model of the COREX melter gasifier is developed to study the transient behavior of the furnace. The effect of pulse disturbance and step disturbance on the process performance has been studied. This study shows that the effect of pulse disturbance decays asymptotically. The step change brings the system to a new steady state after a delay of about 5 hours. The dynamic behavior of the melter gasifier with respect to a shutdown/blow-on condition and the effect of tapping are also studied. The results show that the time response of the melter gasifier is much less than that of a blast furnace.
Resumo:
In this paper, the effects of T -stress on steady, dynamic crack growth in an elastic-plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J (2) flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T -stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T -stress for both ductile and cleavage mode of crack growth.
Resumo:
Here we report a temperature-dependent Raman study of the pyrochlore ``dynamic spin-ice'' compound Pr(2)Sn(2)O(7) and compare the results with its non-pyrochlore (monoclinic) counterpart Pr(2)Ti(2)O(7). In addition to phonon modes, we observe two bands associated with electronic Raman scattering involving crystal field transitions in Pr(2)Sn(2)O(7) at similar to 135 and 460 cm(-1) which couple strongly to phonons. Anomalous temperature dependence of phonon frequencies that are observed in Pyrochlore Pr(2)Sn(2)O(7) are absent in monoclinic Pr(2)Ti(2)O(7). This, therefore, confirms that the strong phonon-phonon anharmonic interactions, responsible for the temperature-dependent anomalous behavior of phonons, arise due to the inherent vacant sites in the pyrochlore structure. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We find that at low temperature water, large amplitude (similar to 60 degrees) rotational jumps propagate like a string, with the length of propagation increasing with lowering temperature. The strings are formed by mobile 5-coordinated water molecules which move like a Glarum defect (J. Chem. Phys., 1960, 33, 1371), causing water molecules on the path to change from 4-coordinated to 5-coordinated and again back to 4-coordinated water, and in the process cause the tagged water molecule to jump, by following essentially the Laage-Hynes mechanism (Science, 2006, 311, 832-835). The effects on relaxation of the propagating defect causing large amplitude jumps are manifested most dramatically in the mean square displacement (MSD) and also in the rotational time correlation function of the O-H bond of the molecule that is visited by the defect (transient transition to the 5-coordinated state). The MSD and the decay of rotational time correlation function, both remain quenched in the absence of any visit by the defect, as postulated by Glarum long time ago. We establish a direct connection between these propagating events and the known thermodynamic and dynamic anomalies in supercooled water. These strings are found largely in the regions that surround the relatively rigid domains of 4-coordinated water molecules. The propagating strings give rise to a noticeable dynamical heterogeneity, quantified here by a sharp rise in the peak of the four-point density response function, chi(4)(t). This dynamics heterogeneity is also responsible for the breakdown of the Stokes-Einstein relation.
Resumo:
A low power keeper circuit using the concept of rate sensing has been proposed. The proposed technique reduces the amount of short circuit power dissipation in the domino gate by 70% compared to the conventional keeper technique. Also the total power-delay product is 26% lower compared to the previously reported techniques. The process tracking capability of the design enables the domino gate to achieve uniform delay across different process corners. This reduces the amount of short circuit power dissipation that occurs in the cascaded domino gates by 90%. The use of the proposed technique in the read path of a register file reduces the energy requirement by 26% as compared to the other keeper techniques. The proposed technique has been prototyped in 130nm CMOS technology.
Resumo:
Size and strain rate effects are among several factors which play an important role in determining the response of nanostructures, such as their deformations, to the mechanical loadings. The mechanical deformations in nanostructure systems at finite temperatures are intrinsically dynamic processes. Most of the recent works in this context have been focused on nanowires [1, 2], but very little attention has been paid to such low dimensional nanostructures as quantum dots (QDs). In this contribution, molecular dynamics (MD) simulations with an embedded atom potential method(EAM) are carried out to analyse the size and strain rate effects in the silicon (Si) QDs, as an example. We consider various geometries of QDs such as spherical, cylindrical and cubic. We choose Si QDs as an example due to their major applications in solar cells and biosensing. The analysis has also been focused on the variation in the deformation mechanisms with the size and strain rate for Si QD embedded in a matrix of SiO2 [3] (other cases include SiN and SiC matrices).It is observed that the mechanical properties are the functions of the QD size, shape and strain rate as it is in the case for nanowires [2]. We also present the comparative study resulted from the application of different EAM potentials in particular, the Stillinger-Weber (SW) potential, the Tersoff potentials and the environment-dependent interatomic potential (EDIP) [1]. Finally, based on the stabilized structural properties we compute electronic bandstructures of our nanostructures using an envelope function approach and its finite element implementation.
Resumo:
This paper describes a dynamic voltage frequency control scheme for a 256 X 64 SRAM block for reducing the energy in active mode and stand-by mode. The DVFM control system monitors the external clock and changes the supply voltage and the body bias so as to achieve a significant reduction in energy. The behavioral model of the proposed DVFM control system algorithm is described and simulated in HDL using delay and energy parameters obtained through SPICE simulation. The frequency range dictated by an external controller is 100 MHz to I GHz. The supply voltage of the complete memory system is varied in steps of 50 mV over the range of 500 mV to IV. The threshold voltage range of operation is plusmn100 mV around the nominal value, achieving 83.4% energy reduction in the active mode and 86.7% in the stand-by mode. This paper also proposes a energy replica that is used in the energy monitor subsystem of the DVFM system.