978 resultados para degree of polymerization (DP)
Resumo:
The structural and thermal properties of three different dental composite resins, Filtek (TM) Supreme XT, Filtek (TM) Z-250 and TPHA (R)(3) were investigated in this study. The internal structures of uncured and cured resins with blue light-emitting diodes (LEDs) were examined by Micro-Raman spectroscopy. Thermal analysis techniques as DSC, TG and DTG methods were used to investigate the temperature characteristics, as glass transition (T (g) ), degradation, and the thermal stability of the resins. The results showed that the TPHA (R)(3) and Filtek (TM) Supreme XT presented very similar T (g) values, 48 and 50A degrees C, respectively, while the Filtek (TM) Z-250 composite resin presented a higher one, 58A degrees C. AFM microscope was utilized in order to analyze the sample morphologies, which possess different fillers. The composed resin Filtek (TM) Z-250 has a well interconnected more homogeneous morphology, suggesting a better degree of conversion correlated to the glass phase transition temperature. The modes of vibration of interest in the resin were investigated using Raman spectroscopy. It was possible to observe the bands representative for the C=C (1630 cm(-1)) and C=O(1700 cm(-1)) vibrations were studied with respect to their compositions and polymerization. It was observed that the Filtek (TM) Z -250 resin presents the best result related to the thermal properties and polymerization after light curing among the other resins.
Resumo:
For the first time, the resonance Raman spectroscopy was used to characterize polymers derived from meta- and para-nitroanilines. In order to improve the polymer structure analysis, other techniques were also used such as FTIR, UV-vis, XRD, XPS, EPR and N K-XANES. The insertion of strong electron-withdrawing groups (NO2) in polyaniline (PANI)-like backbone causes drastic changes in the lower energy charge transfer states, related to the polymer effective conjugation length. The resonance Raman data show that the NO2 moiety has a minor contribution on the CT state in poly(meta-nitroaniline), PMN, while in the poly(para-nitroaniline), PPN, the quinoid structure induced by para-substitution increases the charge density of NO2 groups, causing a more localized chromophore. The characterization of the imine nitrogen and of the protonated segments was done by XPS, N K-XANES and EPR spectroscopies and the lower polymerization degree of PPN, in comparison to PMN, is confirmed by XRD and TG data. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The complex of Brookhart Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6- diisopropylphenyl)-acenaphthenediimine) has been characterized after impregnation on silica (S1) and MAO-modified silicas (4.0, 8.0 and 23.0 wts.% Al/SiO2 called S2, S3 and S4, respectively). The treatment of these heterogeneous systems with MAO produces some active catalysts for the polymerization of the ethylene. A high catalytic activity has been gotten while using the system supported 1/S3 (196 kg of PE/mol[Ni].h.atm; toluene, Al/Ni = 1000, 30ºC, 60 min and atmospheric pressure of ethylene). The effects of polymerization conditions have been tested with the catalyst supported in S2 and the best catalytic activity has been gotten with solvent hexane, MAO as cocatalyst, molar ratio Al/Ni of 1000 and to the temperature of 30°C (285 kg of PE/mol[Ni].h.atm). When the reaction has been driven according to the in situ methodology, the activity practically doubled and polymers showed some similar properties. Polymers products by the supported catalysts showed the absence of melting fusion, results similar to those gotten with the homogeneous systems by DSC analysis. But then, polymers gotten with the transplanted system present according to the GPC’s curves the polydispersity (MwD) varies between 1.7 and 7.0. A polyethylene blend (BPE/LPE) was prepared using the complex Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {TpMs*}TiCl3 (2) (TpMs* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesitylpyrazol-1-yl)) supported in situ on MAO-modified silica (4.0 wts. -% Al/SiO2, S2). Reactions of polymerization of ethylene have been executed in the toluene in two different temperatures (0 and 30°C), varying the molars fraction of nickel (xNi), and using MAO as external cocatalyst. To all temperatures, the activities show a linear variation tendency with xNi and indicate the absence of the effect synergic between the species of nickel and the titanium. The maximum of activity have been found at 0°C. The melting temperature for the blends of polyethylene produced at 0 °C decrease whereas xNi increases indicating a good compatibility between phases of the polyethylene gotten with the two catalysts. The melting temperature for the blends of polyethylene showed be depend on the order according to which catalysts have been supported on the MAO-modified silica. The initial immobilization of 1 on the support (2/1/S2) product of polymers with a melting temperature (Tm) lower to the one of the polymer gotten when the titanium has been supported inicially (1/2/S2). The observation of polyethylenes gotten with the two systems (2/1/S2 and 1/2/S2) by scanning electron microscopy (SEM) showed the spherical polymer formation showing that the spherical morphology of the support to been reproduced. Are described the synthesis, the characterization and the catalytic properties for the oligomerization of the ethylene of four organometallics compounds of CrIII with ligands ([bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine] chromium (III) chloride (3a), [bis[2-(3,5- dimethyl-l-pyrazolyl)ethyl]benzylamine] chromium (III) chloride (3b), [bis[2-(3,5-dimethyl-lpyrazolyl) ethyl]ether] chromiun(III)chloride (3c), [bis[2-(3-phenyl-lpyrazolyl) ethyl]ether]chromiun(III)chloride (3d)). In relation of the oligomerization, at exception made of the compounds 3a, all complex of the chromium showed be active after activation with MAO and the TOF gotten have one effect differentiated to those formed with CrCl3(thf)3. The coordination of a tridentate ligand on the metallic center doesn't provoke any considerable changes on the formation of the C4 and C6, but the amount of C8 are decrease and the C10 and C12+ have increased. The Polymers produced by the catalyst 3a to 3 and 20 bar of ethylene have, according to analyses by DSC, the temperatures of fusion of 133,8 and 136ºC respectively. It indicates that in the two cases the production of high density polyethylene. The molar mass, gotten by GPC, is 46647 g/mols with MwD = 2,4 (3 bar). The system 3c/MAO showed values of TOF, activity and selectivity to different α-olefins according to the pressure of ethylene uses. Himself that shown a big sensibility to the concentration of ethylene solubilized.
Resumo:
PURPOSE: To assess the effects of the elevation of the left ventricular end-diastolic pressure (LVEDP) on the value of the 1st temporal derivative of the ventricular pressure (dP/dt). METHODS: Nineteen anesthetized dogs were studied. The dogs were mechanically ventilated and underwent thoracotomy with parasympathetic nervous system block. The LVEDP was controlled with the use of a perfusion circuit connected to the left atrium and adjusted to the height of a reservoir. The elevation of the LVEDP was achieved by a sudden increase in the height of a reservoir filled with blood. Continuous recordings of the electrocardiogram, the aortic and ventricular pressures and the dP/dt were performed. RESULTS: Elevation of the LVEDP did not result in any variation of the heart rate (167±16.0bpm, before the procedure; 167±15.5bpm, after the procedure). All the other variables assessed, including systolic blood pressure (128±18.3mmHg and 150±21.5mmHg), diastolic blood pressure (98±16.9mmHg and 115±19.8mmHg), LVEDP (5.5±2.49 and 9.3±3.60mmHg), and dP/dt (4,855 ± 1,082 mmHg/s and 5,149±1,242mmHg/s) showed significant increases following the expansion of the ventricular cavity. Although the elevation of the dP/dt was statistically significant, 6 dogs curiously showed a decrease in the values of dP/dt. CONCLUSION: Sudden elevation of the LVEDP resulted in increased values of dP/dt; however, in some dogs, this response was not uniform.
Resumo:
Due to their excellent aesthetics, photopolymers have been extensively used in several dentistry applications. However, several problems are reported, e.g. low mechanical and abrasion resistance, shrinkage during polymerization, etc. Properties of the final restorations are intrinsically related to the polymerization stage, which can be conveniently studied by photocalorimetry. In the present work the polymerization reaction and the filler content of different photocurable commercial dental methacrylate-based composites were studied by means of photocalorimetry and thermogravimetry, respectively. The results show that the values of curing rate, the heat of polymerization and the filler content vary significantly from one composite to another.
Resumo:
Objective: To evaluate the linear polymerization shrinkage (LPS) and the effect of polymerization shrinkage of a resin composite and resin-dentin bond strength under different boundary conditions and filling techniques.Methods: Two cavities (4 x 4 x 2 MM) were prepared in bovine incisors (n = 30). The teeth were divided into three groups, according to boundary conditions: In group TE, the total-etch technique was used. In group EE, only enamel was conditioned, and in group NE, none of the watts of the cavities were conditioned. A two-step adhesive system was applied to all cavities. The resin composite was inserted in one (B) or three increments (1), and tight-cured with 600 mW/cm(2) (80 s). The LPS (%) was measured in the top-bottom direction, by placing a probe in contact with resin composite during curing. Enamel and total mean gap widths were measured (400 x) in three slices obtained after sectioning the restorations. Then, the slices were sectioned again, either to obtain sticks from the adhesive interface from the bottom of the cavity or to obtain resin composite sticks (0.8 mm(2)) to be tested for tensile strength (Kratos machine, 0.5 mm/min). The data was subjected to a two-way repeated measures ANOVA and Tukey's test for comparison of the means (alpha = 0.05).Results: the highest percentage of LPS was found for the TE when bulk fitted, and the lowest percentage of LPS was found in the Hand NE when incrementally fitted. The resin dentin bond strength was higher and the total mean gap width was tower for TE group; no significant effect was detected for the main factor fitting techniques. No difference was detected for the tensile strength of resin composite among the experimental groups.Conclusions: the filling technique is not able to minimize effects of the polymerization shrinkage, and bonding to the cavity watts is necessary to assure reduced mean gap width and high bond strength values. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The main pool of dissolved organic carbon in tropical aquatic environments, notably in dark-coloured streams, is concentrated in humic substances (HS). Aquatic HS are large organic molecules formed by micro-biotic degradation of biopolymers and polymerization of smaller organic molecules. From an environmental point of view, the study of metal-humic interactions is often aimed at predicting the effect of aquatic HS on the bioavailability of heavy metal ions in the environment. In the present work the aquatic humic substances (HS) isolated from a dark-brown stream (located in an environmental protection area near Cubatao city in São Paulo-State, Brazil) by means of the collector XAD-8 were investigated. FTIR studies showed that the carboxylic carbons are probably the most important binding sites for Hg(II) ions within humic molecules. C-13-NMR and H-1-NMR studies of aquatic HS showed the presence of constituents with a high degree of aromaticity (40% of carbons) and small substitution. A special five-stage tangential-flow ultrafiltration device (UF) was used for size fractionation of the aquatic HS under study and for their metal species in the molecular size range 1-100 kDa (six fractions). The fractionation patterns showed that metal traces remaining in aquatic HS after their XAD-8 isolation have different distributions. Generally, the major percentage of traces of Mn, Cd and Ni (determined by ICP-AES) was preferably complexed by molecules with relatively high molecular size. Cu was bound by fractions with low molecular size and Co showed no preferential binding site in the various humic fractions. Moreover, the species formed between aquatic HS and Hg(II), prepared by spiking (determined by CVAAS), appeared to be concentrated in the relatively high molecular size fraction F-1 (> 100 kDa).
Resumo:
Polysiloxane hybrid films were deposited on stainless steel by dip-coating using a sol prepared by hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyltrimethoxysilane (MPTS), followed by radical polymerization of methacrylic moieties. The TEOS/MPTS ratio was chosen equal to 2 and the Ce/Si ratio varied between 0.01 and 0.1. The effects of cerium concentration and valence (Ce(III) and Ce (IV)) on the structural features of polysiloxane films were studied by X-ray photoelectron spectroscopy (XPS) and (29)Si nuclear magnetic resonance (NMR). The corrosion protection of stainless steel by the hybrid coatings was investigated by XPS, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves, after immersion in saline and acid solutions. The NMR results have shown for Ce(IV) doped films a high degree of polycondensation of up to 89%. Electrochemical analysis has evidenced that hybrid films with the lowest Ce concentration act as an efficient diffusion barrier by increasing the corrosion resistance and reducing the current densities up to 3 orders of magnitude compared to bare stainless steel. The analysis of structural effects induced by Ce(III) and Ce(IV) species, performed by XPS, indicates that the improved corrosion protection of Ce(IV) doped films might be mainly related to the enhanced polymerization of siloxane groups. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Highly fluorinated plasma polymers are chemically inert,acid resistant and have low friction coefficients, thereby being useful in chemical laboratories and for tribological applications. Here we report the plasma polymerization of ethylene-hexafluorobenzene mixtures by PECVD. The principal parameter of interest is the proportion of C(6)F(6) in the feed, R(F). Films were analyzed using near-normal and grazing-angle Infrared Reflection Absorption Spectroscopy (IRRAS), the latter being particularly useful for detecting modes not usually observed at near-normal incidence. The presence of CH and CF(x) (x=1 to 2) groups was thus confirmed in films deposited with R(F)>= 40%. Depending on R(F) IRRAS also revealed the presence of -CH(x) (x=1 to 3) -C=C, -C=O and phenyl rings. Deconvolution of C is spectra obtained by X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of CH, CF and CF(2) groups in films deposited with R(F)>= 40%. Atomic ratios of F:C calculated from the XPS spectral data show that the degree of fluorination rises with increasing RF Some unbound fluorine is present in the films. Post-deposition reactions account for the presence of oxygen (similar to 5%) in the films. Surface energies, determined from contact angle measurements, fall with increasing R(F). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: This study evaluated the influence of polymerization cycle and thickness of maxillary complete denture bases on the porosity of acrylic resin. Materials and Methods: Two heat-activated denture base resins - one conventional (Clássico) and one designed for microwave polymerization (Onda-Cryl) - were used. Four groups were established, according to polymerization cycles: A (Onda-Cryl, short microwave cycle), B (Onda-Cryl, long microwave cycle), C (Onda-Cryl, manufacturing microwave cycle), and T (Clássico, water bath). Porosity was evaluated for different thicknesses (2.0, 3.5, and 5.0 mm; thicknesses I, II, and III, respectively) by measurement of the specimen volume before and after its immersion in water. The percent porosity data were submitted to Kruskal-Wallis for comparison among the groups. Results: The Kruskal-Wallis test detected that the combinations of the different cycles and thicknesses showed significant differences, and the mean ranks of percent porosity showed differences only in the thinnest (2.0 mm) microwave-polymerized specimens (A = 53.55, B = 40.80, and C = 90.70). Thickness did not affect the results for cycle T (I = 96.15, II = 70.20, and III = 82.70), because porosity values were similar in the three thicknesses. Conclusions: Microwave polymerization cycles and the specimen thickness of acrylic resin influenced porosity. Porosity differences were not observed in the polymerized resin bases in the water bath cycle for any thickness. © 2007 by The American College of Prosthodontists.
Resumo:
Objective. To evaluate the degree of conversion (DC), flexural strength (FS) and Knoop microhardness (KHN) of direct and indirect composite resins polymerized with different curing systems. Materials and methods. Specimens of direct (Z250, 3M/Espe) and indirect (Sinfony, 3M/Espe) restorative materials were made and polymerized using two light curing units: XL2500 (3M/Espe) and Visio system (3M/Espe). Absorption spectra of both composites were obtained on a FTIR spectrometer in order to calculate the DC. FS was evaluated in a universal testing machine and surface microhardness was performed in a microhardness tester (50gf/15s). DC, FS and KHN data were submitted to two-way ANOVA and Tukey's test (α = 0.05). Results. Z250 showed higher DC, FS and KHN compared with Sinfony when the polymerization was carried out with XL2500 (p < 0.05). However, there is no statistical difference in DC between the materials when Visio was used (p > 0.05). Visio showed higher DC and KHN for Z250 and Sinfony than the values obtained using XL2500 light curing (p < 0.05). For FS, no significant difference between curing units was found (p > 0.05). Conclusion. Even though the Visio system could increase DC and KHN for some direct and indirect composites, compared with the conventional halogen curing unit, a high number of monomers did not undergo conversion during the polymerization. © 2013 Informa Healthcare.
Resumo:
O objetivo deste estudo foi determinar o efeito da polimerização gradual, mediante a utilização de aparelhos de Quartzo-Tungustênio-Halógena (QTH) e Arco de Plasma de Xenônio (PAC), no selamento marginal de restaurações classe V em resina composta com margens localizadas em dentina. Setenta e cinco incisivos bovinos receberam preparos de cavidades classe V, na raiz, com o intuito de situar as margens cavitárias em dentina. Os dentes foram divididos em cinco grupos de acordo com o método de fotoativação. As cavidades, depois de condicionadas, foram tratadas com o sistema adesivo Single Bond (3M Dental) e restauradas com a resina composta Z100 (3M Dental) pela técnica incremental. A fotoativação foi realizada para cada grupo como descrito a seguir: Grupo I: PAC pelo método de fotoativação constante: 1600mW/cm2 – 3s; Grupo II: PAC pelo método de fotoativação por passos (800mW/cm2 – 2s, subindo automaticamente para 1600mW/cm2 – 4s); Grupo III: QTH pelo método de fotoativação constante: 400 mW/cm2 – 40s; Grupo IV: QTH pelo método de fotoativação em rampa: 100 a 600 mW/cm2 – 15s, permanecendo a 600mW/cm2 por mais 25s; Grupo V: QTH pelo método de fotoativação por pulso: 200 mW/cm2 – 3s, tempo de espera de 3min.e a seguir 600mW/cm2 – 30s. Os dentes foram armazenados em água destilada a 37ºC por 30 dias e então submetidos à ciclagem térmica, por 500 ciclos à 5 ºC e 55 ºC. Os ápices dos dentes foram selados com resina composta e os dentes foram cobertos com duas camadas de esmalte para unha, antes da sua imersão em fucsina básica a 0,5%. Os dentes foram seccionados e os cortes foram escaneados para avaliação da área infiltrada por corante por um programa de computador (Image Tools). Os cortes foram também visualizados com lupa para a determinação do grau de penetração do corante na interface dente-restauração por escores. Diferenças estatisticamente significantes foram observadas entre os grupos quanto ao grau e à área de penetração de corante (p < 0,05). Os grupos I e II apresentaram valores significantemente mais altos de infiltração e penetração do corante que os grupos III, IV e V. Em conclusão, o uso da fonte de PAC, no modo constante e por passos, resultou em valores significantemente maiores de infiltração marginal quando comparados com a intensidade de luz média emitida pelos aparelhos de QTH. Os métodos de fotoativação por pulso, rampa e continuo com a fonte de QTH resultaram num grau similar de microinfiltração.
Resumo:
Novel brominated amorphous hydrogenated carbon (a-C:H:Br) films were produced by the plasma polymerization of acetylene-bromoform mixtures. The main parameter of interest was the degree of bromination, which depends on the partial pressure of bromoform in the plasma feed, expressed as a percentage of the total pressure, R-B. When bromoform is present in the feed, deposition rates of up to about 110 nm min(-1) may be obtained. The structure and composition of the films were characterized by Transmission Infrared Reflection Absorption Spectroscopy (IRRAS) and X-ray Photo-electron Spectroscopy (XPS). The latter revealed that films with atomic ratios Br:C of up to 0.58 may be produced. Surface contact angles, measured using goniometry, could be increased from similar to 63 degrees (for an unbrominated film) to similar to 90 degrees for R-B of 60 to 80%. Film surface roughness, measured using a profilometer, does not depend strongly on R-B. Optical properties the refractive index, n, absorption coefficient, alpha(E), where E is the photon energy, and the optical gap, E-g, were determined from film thicknesses and data obtained by Transmission Ultraviolet-Visible Near Infrared Spectroscopy (UVS). Control of n was possible via selection of R-B. The measured optical gap increases with increasing F-BC, the atomic ratio of Br to C in the film, and semi-empirical modeling accounts for this tendency. A typical hardness of the brominated films, determined via nano-indentation, was similar to 0.5 GPa. (C), 2013 Elsevier B.V. All rights reserved.
Resumo:
Introduction: The aim of this study was to assess the influence of curing time and power on the degree of conversion and surface microhardness of 3 orthodontic composites. Methods: One hundred eighty discs, 6 mm in diameter, were divided into 3 groups of 60 samples according to the composite used-Transbond XT (3M Unitek, Monrovia, Calif), Opal Bond MV (Ultradent, South Jordan, Utah), and Transbond Plus Color Change (3M Unitek)-and each group was further divided into 3 subgroups (n = 20). Five samples were used to measure conversion, and 15 were used to measure microhardness. A light-emitting diode curing unit with multiwavelength emission of broad light was used for curing at 3 power levels (530, 760, and 1520 mW) and 3 times (8.5, 6, and 3 seconds), always totaling 4.56 joules. Five specimens from each subgroup were ground and mixed with potassium bromide to produce 8-mm tablets to be compared with 5 others made similarly with the respective noncured composite. These were placed into a spectrometer, and software was used for analysis. A microhardness tester was used to take Knoop hardness (KHN) measurements in 15 discs of each subgroup. The data were analyzed with 2 analysis of variance tests at 2 levels. Results: Differences were found in the conversion degree of the composites cured at different times and powers (P < 0.01). The composites showed similar degrees of conversion when light cured at 8.5 seconds (80.7%) and 6 seconds (79.0%), but not at 3 seconds (75.0%). The conversion degrees of the composites were different, with group 3 (87.2%) higher than group 2 (83.5%), which was higher than group 1 (64.0%). Differences in microhardness were also found (P < 0.01), with lower microhardness at 8.5 seconds (35.2 KHN), but no difference was observed between 6 seconds (41.6 KHN) and 3 seconds (42.8 KHN). Group 3 had the highest surface microhardness (35.9 KHN) compared with group 2 (33.7 KHN) and group 1 (30.0 KHN). Conclusions: Curing time can be reduced up to 6 seconds by increasing the power, with a slight decrease in the degree of conversion at 3 seconds; the decrease has a positive effect on the surface microhardness.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)