993 resultados para code generation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: We are interested in the numerical simulation of the anastomotic region comprised between outflow canula of LVAD and the aorta. Segmenta¬tion, geometry reconstruction and grid generation from patient-specific data remain an issue because of the variable quality of DICOM images, in particular CT-scan (e.g. metallic noise of the device, non-aortic contrast phase). We pro¬pose a general framework to overcome this problem and create suitable grids for numerical simulations.Methods: Preliminary treatment of images is performed by reducing the level window and enhancing the contrast of the greyscale image using contrast-limited adaptive histogram equalization. A gradient anisotropic diffusion filter is applied to reduce the noise. Then, watershed segmentation algorithms and mathematical morphology filters allow reconstructing the patient geometry. This is done using the InsightToolKit library (www.itk.org). Finally the Vascular Model¬ing ToolKit (www.vmtk.org) and gmsh (www.geuz.org/gmsh) are used to create the meshes for the fluid (blood) and structure (arterial wall, outflow canula) and to a priori identify the boundary layers. The method is tested on five different patients with left ventricular assistance and who underwent a CT-scan exam.Results: This method produced good results in four patients. The anastomosis area is recovered and the generated grids are suitable for numerical simulations. In one patient the method failed to produce a good segmentation because of the small dimension of the aortic arch with respect to the image resolution.Conclusions: The described framework allows the use of data that could not be otherwise segmented by standard automatic segmentation tools. In particular the computational grids that have been generated are suitable for simulations that take into account fluid-structure interactions. Finally the presented method features a good reproducibility and fast application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theories on social capital and on social entrepreneurship have mainly highlighted the attitude of social capital to generate enterprises and to foster good relations between third sector organizations and the public sector. This paper considers the social capital in a specific third sector enterprise; here, multi-stakeholder social cooperatives are seen, at the same time, as social capital results, creators and incubators. In the particular enterprises that identify themselves as community social enterprises, social capital, both as organizational and relational capital, is fundamental: SCEs arise from but also produce and disseminate social capital. This paper aims to improve the building of relational social capital and the refining of helpful relations drawn from other arenas, where they were created and from where they are sometimes transferred to other realities, where their role is carried on further (often working in non-profit, horizontally and vertically arranged groups, where they share resources and relations). To represent this perspective, we use a qualitative system dynamic approach in which social capital is measured using proxies. Cooperation of volunteers, customers, community leaders and third sector local organizations is fundamental to establish trust relations between public local authorities and cooperatives. These relations help the latter to maintain long-term contracts with local authorities as providers of social services and enable them to add innovation to their services, by developing experiences and management models and maintaining an interchange with civil servants regarding these matters. The long-term relations and the organizational relations linking SCEs and public organizations help to create and to renovate social capital. Thus, multi-stakeholder cooperatives originated via social capital developed in third sector organizations produce new social capital within the cooperatives themselves and between different cooperatives (entrepreneurial components of the third sector) and the public sector. In their entrepreneurial life, cooperatives have to contrast the "working drift," as a result of which only workers remain as members of the cooperative, while other stakeholders leave the organization. Those who are not workers in the cooperative are (stake)holders with "weak ties," who are nevertheless fundamental in making a worker's cooperative an authentic social multi-stakeholders cooperative. To maintain multi-stakeholder governance and the relations with third sector and civil society, social cooperatives have to reinforce participation and dialogue with civil society through ongoing efforts to include people that provide social proposals. We try to represent these processes in a system dynamic model applied to local cooperatives, measuring the social capital created by the social cooperative through proxies, such as number of volunteers and strong cooperation with public institutions. Using a reverse-engineering approach, we can individuate the determinants of the creation of social capital and thereby give support to governance that creates social capital.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.