852 resultados para calcium supplementation
Resumo:
Objectives: We tested the effects of the three forms of basic calcium phosphate (BCP) crystals (octacalcium phosphate (OCP), carbonate-substituted apatite (CA) and hydroxyapatite (HA)) on monocytes and macrophages on IL-1β secretion. The requirement for the NALP3 inflammasome and TLR2 and TLR4 receptors in this acute response was analyzed.
Resumo:
The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.
Resumo:
INTRODUCTION: Osteoset(®) T is a calcium sulphate void filler containing 4% tobramycin sulphate, used to treat bone and soft tissue infections. Despite systemic exposure to the antibiotic, there are no pharmacokinetic studies in humans published so far. Based on the observations made in our patients, a model predicting tobramycin serum levels and evaluating their toxicity potential is presented. METHODS: Following implantation of Osteoset(®) T, tobramycin serum concentrations were monitored systematically. A pharmacokinetic analysis was performed using a non-linear mixed effects model based on a one compartment model with first-degree absorption. RESULTS: Data from 12 patients treated between October 2006 and March 2008 were analysed. Concentration profiles were consistent with the first-order slow release and single-compartment kinetics, whilst showing important variability. Predicted tobramycin serum concentrations depended clearly on both implanted drug amount and renal function. DISCUSSION AND CONCLUSION: Despite the popularity of aminoglycosides for local antibiotic therapy, pharmacokinetic data for this indication are scarce, and not available for calcium sulphate as carrier material. Systemic exposure to tobramycin after implantation of Osteoset(®) T appears reassuring regarding toxicity potential, except in case of markedly impaired renal function. We recommend in adapting the dosage to the estimated creatinine clearance rather than solely to the patient's weight.
Resumo:
The use of chemicals is a critical part of a pro-active winter maintenance program. However, ensuring that the correct chemicals are used is a challenge. On the one hand, budgets are limited, and thus price of chemicals is a major concern. On the other, performance of chemicals, especially at lower pavement temperatures, is not always assured. Two chemicals that are used extensively by the Iowa Department of Transportation (Iowa DOT) are sodium chloride (or salt) and calcium chloride. While calcium chloride can be effective at much lower temperatures than salt, it is also considerably more expensive. Costs for a gallon of salt brine are typically in the range of $0.05 to $0.10, whereas calcium chloride brine may cost in the range of $1.00 or more per gallon. These costs are of course subject to market forces and will thus change from year to year. The idea of mixing different winter maintenance chemicals is by no means new, and in general discussions it appears that many winter maintenance personnel have from time to time mixed up a jar of chemicals and done some work around the yard to see whether or not their new mix “works.” There are many stories about the mixture turning to “mayonnaise” (or, more colorfully, to “snot”) suggesting that mixing chemicals may give rise to some problems most likely due to precipitation. Further, the question of what constitutes a mixture “working” in this context is a topic of considerable discussion. In this study, mixtures of salt brine and calcium chloride brine were examined to determine their ice melting capability and their freezing point. Using the results from these tests, a linear interpolation model of the ice melting capability of mixtures of the two brines has been developed. Using a criterion based upon the ability of the mixture to melt a certain thickness of ice or snow (expressed as a thickness of melt-water equivalent), the model was extended to develop a material cost per lane mile for the full range of possible mixtures as a function of temperature. This allowed for a comparison of the performance of the various mixtures. From the point of view of melting capacity, mixing calcium chloride brine with salt brine appears to be effective only at very low temperatures (around 0° F and below). However, the approach described herein only considers the material costs, and does not consider application costs or other aspects of the mixture performance than melting capacity. While a unit quantity of calcium chloride is considerably more expensive than a unit quantity of sodium chloride, it also melts considerably more ice. In other words, to achieve the same result, much less calcium chloride brine is required than sodium chloride brine. This is important in considering application costs, because it means that a single application vehicle (for example, a brine dispensing trailer towed behind a snowplow) can cover many more lane miles with calcium chloride brine than with salt brine before needing to refill. Calculating exactly how much could be saved in application costs requires an optimization of routes used in the application of liquids in anti-icing, which is beyond the scope of the current study. However, this may be an area that agencies wish to pursue for future investigation. In discussion with winter maintenance personnel who use mixtures of sodium chloride and calcium chloride, it is evident that one reason for this is because the mixture is much more persistent (i.e. it stays longer on the road surface) than straight salt brine. Operationally this persistence is very valuable, but at present there are not any established methods to measure the persistence of a chemical on a pavement. In conclusion, the study presents a method that allows an agency to determine the material costs of using various mixtures of salt brine and calcium chloride brine. The method is based upon the requirement of melting a certain quantity of snow or ice at the ice-pavement interface, and on how much of a chemical or of a mixture of chemicals is required to do that.
Resumo:
Urinary magnesium and pH are known to modulate urinary calcium excretion, but the mechanisms underlying these relationships are unknown. In this study, the data from 17 clinical trials in which urinary magnesium and pH were pharmacologically manipulated were analyzed, and it was found that the change in urinary calcium excretion is directly proportional to the change in magnesium excretion and inversely proportional to the change in urine pH; a regression equation was generated to relate these variables (R(2) = 0.58). For further exploration of these relationships, intravenous calcium chloride, magnesium chloride, or vehicle was administered to rats. Magnesium infusion significantly increased urinary calcium excretion (normalized to urinary creatinine), but calcium infusion did not affect magnesium excretion. Parathyroidectomy did not prevent this magnesium-induced hypercalciuria. The effect of magnesium loading on calciuria was still observed after treatment with furosemide, which disrupts calcium and magnesium absorption in the thick ascending limb, suggesting that the effect may be mediated by the distal nephron. The calcium channel TRPV5, normally present in the distal tubule, was expressed in Xenopus oocytes. Calcium uptake by TRPV5 was directly inhibited by magnesium and low pH. In summary, these data are compatible with the hypothesis that urinary magnesium directly inhibits renal calcium absorption, which can be negated by high luminal pH, and that this regulation likely takes place in the distal tubule.
Resumo:
The objective of this work was to determine the effects of postharvest application of 1-methylcyclopropene (1-MCP) and two calcium salts, applied individually or combined, on firmness and visual quality of fresh-cut muskmelon stored in air, for 18 days. Two sets of fruits, one of them exposed to 1-MCP at 300 nL L-1, were cut into cubes, dipped in deionized water, or in 1% Ca solutions as CaCl2, or in calcium amino acid chelate (Ca-chelate), placed in clamshell containers, and stored in air at 5±1ºC and 90±5% RH, for 18 days. The assay was conducted using an entirely randomized design, with three replications, in a split plot array. Evaluation of visual appearance, color, flesh firmness, total soluble solids, titratable acidity, and pH was performed right after treatments, and every period of three days, up to eighteen days. Application of 1-MCP at 300 nL L-1, calcium chloride or Ca-chelate, or the combination 1-MCP and calcium, preserved initial freshness and reduced softening of the samples. Ca-chelate synergistically enhanced the effect of 1-MCP on firmness after nine days of storage, while calcium chloride improved firmness of the samples throughout storage. Ca-chelate may serve as an alternative for shelf life extension of cantaloupe fresh-cut muskmelon.
Resumo:
OBJECTIVE: To investigate the effect of aerobic training in the context of antioxidant supplementation on systemic oxidative stress and leukocytes heat shock protein (Hsp)72 expression in the elderly. DESIGN: Sixteen septuagenarians (8 males and 8 females, mean age 74.6) were supplemented with Vitamin C and E (respectively 500 and 100mg per day) and randomly assigned either to sedentary (AS) or individualized aerobically trained (AT) group for 8 weeks. METHODS: Plasma Vitamin C and E concentrations and aerobic fitness, as well as resting and post graded exercise (GXT) Hsp72 expression in leukocytes, plasma levels of thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein product (AOPP) were measured pre and post training / supplementation. RESULTS: At the end of the intervention, the two groups showed a significant increase in resting plasma vitamin C and E (approximately 50 and 20% increase respectively) and a significant decrease in both resting and post GXT plasma TBARS and AOPP (approximately 25 and 20% decrease respectively). These changes were of similar magnitude in the two groups. The reduced oxidative stress was concomitant with a 15% decreased expression of Hsp72 in monocytes and granulocytes in both groups. CONCLUSION: This study provides evidence that in elderly, increased concentration of antioxidant vitamins C and E is associated with a reduction in oxidative stress and leukocytes Hsp72. In this context, 8 weeks of aerobic training has no impact on oxidative stress or leukocytes Hsp72 expression in elderly people.
Resumo:
Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.
Resumo:
Context: Glitazones increase fracture risk in long-term users and in postmenopausal women. Studies have demonstrated deleterious effects of glitazones on bone metabolism. Glitazones also have direct renal tubular effects increasing sodium reabsorption. We hypothesized that glitazones may also regulate renal calcium excretion. Design: In this double-blind, randomized, placebo-controlled, four-way, crossover study, we examined the effects of pioglitazone (45 mg/d for 6 wk) or placebo on renal calcium and phosphate excretion and PTH levels during different sodium intakes in 16 individuals (eight with type 2 diabetes and eight with essential hypertension). Results: Pioglitazone had no effect on corrected plasma calcium and phosphate levels but decreased significantly the alkaline phosphatase and PTH levels. Pioglitazone induced on average a 45% increase in urinary calcium excretion. The fractional excretion of calcium rose to the same extent, suggesting a glomerular filtration rate-independent effect. Sodium intake did not influence the calciuric effect of pioglitazone. Changes in diurnal and nocturnal calciuria were similar. There was no effect of pioglitazone on phosphate excretion. Conclusion: Pioglitazone decreases PTH levels and increases urinary calcium excretion, independently from changes in glomerular filtration rate and from the sodium load, suggesting an inhibitory effect of pioglitazone on the tubular reabsorption of calcium. These effects may contribute to the increased fracture risk with glitazone treatment.
Resumo:
There is an increasing utilisation of oral creatine (Cr) supplementation among athletes who hope to enhance their performance but it is not known if this ingestion has any detrimental effect on the kidney. Five healthy men ingested either a placebo or 20 g of creatine monohydrate per day for 5 consecutive days. Blood samples and urine collections were analysed for Cr and creatinine (Crn) determination after each experimental session. Total protein and albumin urine excretion rates were also determined. Oral Cr supplementation had a significant incremental impact on arterial content (3.7 fold) and urine excretion rate (90 fold) of this compound. In contrast, arterial and urine Crn values were not affected by the Cr ingestion. The glomerular filtration rate (Crn clearance) and the total protein and albumin excretion rates remained within the normal range. In conclusion, this investigation showed that short-term oral Cr supplementation does not appear to have any detrimental effect on the renal responses of healthy men.
Resumo:
The objective of this work was to assess the relationship between macrofauna, mineralogy and exchangeable calcium and magnesium in Cerrado Oxisols under pasture. Twelve collection points were chosen in the Distrito Federal and in Formosa municipality, Goiás state, Brazil, representing four soil groups with varied levels of calcium + magnesium and kaolinite/(kaolinite + gibbsite) ratios. Soil macrofauna was collected in triplicate at each collection point, and identified at the level of taxonomic groups. Macrofauna density showed correlation with contents of kaolinite, gibbsite and exchangeable Ca + Mg in the soils. Mineralogy and exchangeable Ca + Mg had significant effects on taxonomic groups and relative density of soil macrofauna. The termites (Isoptera) were more abundant in soils with low exchangeable Ca + Mg; earthworms (Oligochaeta), in soils with high levels of kaolinite; and Hemiptera and Coleoptera larvae were more abundant in gibbsitic soils with higher contents of total carbon.
Resumo:
INTRODUCTION: Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. METHODS: We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. RESULTS: Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CONCLUSIONS: CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.
Resumo:
Transforming growth factor beta (TGF-beta) is a pluripotent peptide hormone that regulates various cellular activities, including growth, differentiation, and extracellular matrix protein gene expression. We previously showed that TGF-beta induces the transcriptional activation domain (TAD) of CTF-1, the prototypic member of the CTF/NF-I family of transcription factors. This induction correlates with the proposed role of CTF/NF-I binding sites in collagen gene induction by TGF-beta. However, the mechanisms of TGF-beta signal transduction remain poorly understood. Here, we analyzed the role of free calcium signaling in the induction of CTF-1 transcriptional activity by TGF-beta. We found that TGF-beta stimulates calcium influx and mediates an increase of the cytoplasmic calcium concentration in NIH3T3 cells. TGF-beta induction of CTF-1 is inhibited in cells pretreated with thapsigargin, which depletes the endoplasmic reticulum calcium stores, thus further arguing for the potential relevance of calcium mobilization in TGF-beta action. Consistent with this possibility, expression of a constitutively active form of the calcium/calmodulin-dependent phosphatase calcineurin or of the calcium/calmodulin-dependent kinase IV (DeltaCaMKIV) specifically induces the CTF-1 TAD and the endogenous mouse CTF/NF-I proteins. Both calcineurin- and DeltaCaMKIV-mediated induction require the previously identified TGF-beta-responsive domain of CTF-1. The immunosuppressants cyclosporin A and FK506 abolish calcineurin-mediated induction of CTF-1 activity. However, TGF-beta still induces the CTF-1 TAD in cells treated with these compounds or in cells overexpressing both calcineurin and DeltaCaMKIV, suggesting that other calcium-sensitive enzymes might mediate TGF-beta action. These results identify CTF/NF-I as a novel calcium signaling pathway-responsive transcription factor and further suggest multiple molecular mechanisms for the induction of CTF/NF-I transcriptional activity by growth factors.
Resumo:
Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.
Resumo:
Background: Elevated urinary calcium excretion is associated with reduced bone mineral density. Population-based data on urinary calcium excretion are scarce. We explored the association of serum calcium and circulating levels of vitamin D (including 25(OH)D2 and 25(OH)D3) with urinary calcium excretion in men and women in a population-based study. Methods: We used data from the "Swiss Survey on Salt" conducted between 2010 and 2012 and including people aged 15 years and over. Twenty-four hour urine collection, blood analysis, clinical examination and anthropometric measures were collected in 11 centres from the 3 linguistic regions of Switzerland. Vitamin D was measured centrally using liquid chromatography - tandem mass spectrometry. Hypercalciuria was defined as urinary calcium excretion >0.1 mmol/kg/24h. Multivariable linear regression was used to explore factors associated with 24-hour urinary calcium excretion (mmol/24h) squared root transformed, taken as the dependant variable. Vitamin D was divided into monthspecific tertiles with the first tertile having the lowest value and the third tertile having the highest value. Results: The 669 men and 624 women had mean (SD) age of 49.2 (18.1) and 47 (17.9) years and a prevalence of hypercalciuria of 8.9% and 8.0%, respectively. In adjusted models, the association of urinary calcium excretion with protein-corrected serum calcium was (β coefficient } standard error, according to urinary calcium squared root transformed) 1.125 } 0.184 mmol/L per square-root (mmol/24h) (P<0.001) in women and 0.374 } 0.224 (P=0.096) in men. Men in the third month-specific vitamin D tertile had higher urinary calcium excretion than men in the first tertile (0.170 } 0.05 nmol/L per mmol/24h, P=0.001) and the corresponding association was 0.048 } 0.043, P= 0.272 in women. Conclusion: About one in eleven person has hypercalciuria in the Swiss population. The positive association of serum calcium with urinary calcium excretion was steeper in women than in men, independently of menopausal status. Circulating vitamin D was associated positively with urinary calcium excretion only in men. The reasons underlying the observed sex differences in the hormonal control of urinary calcium excretion need to be explored in further studies.