984 resultados para art evaluation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogs ((2)H(12)- and/or (2)H(12)-(15)N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O(2) concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O(2) sensitivity. Labeling the nitroxides with (15)N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operation in urban environments creates unique challenges for research in autonomous ground vehicles. Due to the presence of tall trees and buildings in close proximity to traversable areas, GPS outage is likely to be frequent and physical hazards pose real threats to autonomous systems. In this paper, we describe a novel autonomous platform developed by the Sydney-Berkeley Driving Team for entry into the 2007 DARPA Urban Challenge competition. We report empirical results analyzing the performance of the vehicle while navigating a 560-meter test loop multiple times in an actual urban setting with severe GPS outage. We show that our system is robust against failure of global position estimates and can reliably traverse standard two-lane road networks using vision for localization. Finally, we discuss ongoing efforts in fusing vision data with other sensing modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial expression is an important channel for human communication and can be applied in many real applications. One critical step for facial expression recognition (FER) is to accurately extract emotional features. Current approaches on FER in static images have not fully considered and utilized the features of facial element and muscle movements, which represent static and dynamic, as well as geometric and appearance characteristics of facial expressions. This paper proposes an approach to solve this limitation using ‘salient’ distance features, which are obtained by extracting patch-based 3D Gabor features, selecting the ‘salient’ patches, and performing patch matching operations. The experimental results demonstrate high correct recognition rate (CRR), significant performance improvements due to the consideration of facial element and muscle movements, promising results under face registration errors, and fast processing time. The comparison with the state-of-the-art performance confirms that the proposed approach achieves the highest CRR on the JAFFE database and is among the top performers on the Cohn-Kanade (CK) database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial expression recognition (FER) algorithms mainly focus on classification into a small discrete set of emotions or representation of emotions using facial action units (AUs). Dimensional representation of emotions as continuous values in an arousal-valence space is relatively less investigated. It is not fully known whether fusion of geometric and texture features will result in better dimensional representation of spontaneous emotions. Moreover, the performance of many previously proposed approaches to dimensional representation has not been evaluated thoroughly on publicly available databases. To address these limitations, this paper presents an evaluation framework for dimensional representation of spontaneous facial expressions using texture and geometric features. SIFT, Gabor and LBP features are extracted around facial fiducial points and fused with FAP distance features. The CFS algorithm is adopted for discriminative texture feature selection. Experimental results evaluated on the publicly accessible NVIE database demonstrate that fusion of texture and geometry does not lead to a much better performance than using texture alone, but does result in a significant performance improvement over geometry alone. LBP features perform the best when fused with geometric features. Distributions of arousal and valence for different emotions obtained via the feature extraction process are compared with those obtained from subjective ground truth values assigned by viewers. Predicted valence is found to have a more similar distribution to ground truth than arousal in terms of covariance or Bhattacharya distance, but it shows a greater distance between the means.