812 resultados para Virtual Reality,Cloud Gaming,Cloud Computing,Client-Server,Android,Unity,Multiutenza


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulating the efficiency of business processes could reveal crucial bottlenecks for manufacturing companies and could lead to significant optimizations resulting in decreased time to market, more efficient resource utilization, and larger profit. While such business optimization software is widely utilized by larger companies, SMEs typically do not have the required expertise and resources to efficiently exploit these advantages. The aim of this work is to explore how simulation software vendors and consultancies can extend their portfolio to SMEs by providing business process optimization based on a cloud computing platform. By executing simulation runs on the cloud, software vendors and associated business consultancies can get access to large computing power and data storage capacity on demand, run large simulation scenarios on behalf of their clients, analyze simulation results, and advise their clients regarding process optimization. The solution is mutually beneficial for both vendor/consultant and the end-user SME. End-user companies will only pay for the service without requiring large upfront costs for software licenses and expensive hardware. Software vendors can extend their business towards the SME market with potentially huge benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las TIC son inseparables de la museografía in situ e imprescindibles en la museografía en red fija y móvil. En demasiados casos se han instalado prótesis tecnológicas para barnizar de modernidad el espacio cultural, olvidando que la tecnología debe estar al servicio de los contenidos de manera que resulte invisible y perfectamente imbricada con la museografía tradicional. Las interfaces móviles pueden fusionar museo in situ y en red y acompañar a las personas más allá del espacio físico. Esa fusión debe partir de una base de datos narrativa y abierta a obras materiales e inmateriales de otros museos de manera que no se trasladen las limitaciones del museo físico al virtual. En el museo in situ tienen sentido las instalaciones hipermedia inmersivas que faciliten experiencias culturales innovadoras. La interactividad (relaciones virtuales) debe convivir con la interacción (relaciones físicas y personales) y estar al servicio de todas las personas, partiendo de que todas, todos tenemos limitaciones. Trabajar interdisciplinarmente ayuda a comprender mejor el museo para ponerlo al servicio de las personas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This deliverable is software, as such this document is abridged to be as succinct as possible, the extended descriptions and detailed documentation for the software are online. The document consists of two parts, part one describes the first bundle of social gamification assets developed in WP3, part two presents mock-ups of the RAGE ecosystem gamification. In addition to the software outline, included in part one is a short market analysis of existing gamification solutions, outline rationale for combining the three social gamification assets into one unified asset, and the branding exercise to make the assets more developer friendly.Online links to the source code, binaries, demo and documentation for the assets are provided. The combined assets offer game developers as well as a wide range of software developers the opportunity to readily enhance existing games or digital platforms with multiplayer gamification functionalities, catering for both competitive and cooperative game dynamics. The solution consist of a flexible client-server solution which can run either as a cloud-based service, serving many games or have specific instances for individual games as necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durch den großen Erfolg des Cloud Computing und der hohen Geschwindigkeit, mit der Cloud-Innovationen seither Einzug in die Praxis finden, eröffnen sich für die Industrie neue Chancen im Wettbewerb. Von besonderer Bedeutung sind die Möglichkeiten, Cloud-gestützte Geschäftsprozesse dynamisch, als direkte Reaktion auf einen Kundenauftrag, anzupassen und auszuführen. Dies gilt insbesondere auch für kooperative und unternehmensübergreifende Anwendungen, welche aus mehreren IT-Diensten verschiedener Partner bestehen. Gegenstand dieses Artikels ist die Vorstellung eines Konzeptes und einer Architektur für eine zentrale Cloud-Plattform zur Konfiguration, Ausführung und Überwachung von kollaborativen Logistik-Prozessen. Auf dieser Plattform können Geschäftsprozesse modelliert und in ihren Privacy-Eigenschaften parametrisiert werden. Die einzelnen Prozesselemente werden dabei mit IT-Diensten verknüpft, die beispielsweise auf externen Cloud-Plattformen ausgeführt werden. Ein Schwerpunkt der Veröffentlichung liegt in der Betrachtung der Erstellung, Umsetzung und Überwachung von Privacy-Anforderungen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro sviluppato deriva dalla creazione, in sede di tirocinio, di un piccolo database, creato a partire dalla ricerca dei dati fino alla scelta di informazioni di rilievo e alla loro conseguente archiviazione. L’obiettivo dell’elaborato è rappresentato dalla volontà di ampliare quella conoscenza basilare posseduta sul mondo dell’informazione dal punto di vista gestionale. Infatti, considerando lo scenario odierno, si può affermare che lo studio del cliente attraverso delle informazioni rilevanti, di vario tipo, è una delle conoscenze fondamentali nel mondo dell’ingegneria gestionale. Il metodo di studio utilizzato è basato sulla comprensione delle diverse tipologie di dati presenti nel mondo aziendale e, di conseguenza, al loro legame con il mondo del web e soprattutto con i metodi di archiviazione più moderni e più utilizzati oggi sia dalle aziende, che non dai privati stessi; le piattaforme cloud. L’elaborato si suddivide in tre argomenti differenti ma strettamente collegati tra loro; la prima parte tratta di come l’informazione più basilare vada raccolta ed analizzata, la sezione centrale è legata al tema chiave dell’internet come mezzo di archiviazione e non più solo come piattaforma di ricerca del dato, mentre nel capitolo finale viene chiarito il concetto di cloud computing, comodo veloce ed efficiente, considerato da qualche anno il punto d’incontro fra i primi due argomenti. Nello specifico si andranno a presentare alcuni di applicazione reale del cloud da parte di aziende come Amazon, Google e Facebook, multinazionali che ad oggi sono riuscite a fare dell’archiviazione e della manipolazione dei dati, a scopi industriali, una delle loro fonti di guadagno. Il risultato è rappresentato da una panoramica sul funzionamento e sulle tecniche di utilizzo dell’informazione, partendo dal dato più irrilevante fino ad arrivare ai database condivisi utilizzati, se non addirittura controllati, dalle più rinomate aziende nazionali ed internazionali.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the combination of OSGi and cloud computing. Both technologies are mainly placed in the field of distributed computing. Therefore, it is discussed how different approaches from different institutions work. In addition, the approaches are compared to each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Dithen, a novel computation-as-a-service (CaaS) cloud platform specifically tailored to the parallel ex-ecution of large-scale multimedia tasks. Dithen handles the upload/download of both multimedia data and executable items, the assignment of compute units to multimedia workloads, and the reactive control of the available compute units to minimize the cloud infrastructure cost under deadline-abiding execution. Dithen combines three key properties: (i) the reactive assignment of individual multimedia tasks to available computing units according to availability and predetermined time-to-completion constraints; (ii) optimal resource estimation based on Kalman-filter estimates; (iii) the use of additive increase multiplicative decrease (AIMD) algorithms (famous for being the resource management in the transport control protocol) for the control of the number of units servicing workloads. The deployment of Dithen over Amazon EC2 spot instances is shown to be capable of processing more than 80,000 video transcoding, face detection and image processing tasks (equivalent to the processing of more than 116 GB of compressed data) for less than $1 in billing cost from EC2. Moreover, the proposed AIMD-based control mechanism, in conjunction with the Kalman estimates, is shown to provide for more than 27% reduction in EC2 spot instance cost against methods based on reactive resource estimation. Finally, Dithen is shown to offer a 38% to 500% reduction of the billing cost against the current state-of-the-art in CaaS platforms on Amazon EC2 (Amazon Lambda and Amazon Autoscale). A baseline version of Dithen is currently available at dithen.com.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elasticity is one of the most known capabilities related to cloud computing, being largely deployed reactively using thresholds. In this way, maximum and minimum limits are used to drive resource allocation and deallocation actions, leading to the following problem statements: How can cloud users set the threshold values to enable elasticity in their cloud applications? And what is the impact of the application’s load pattern in the elasticity? This article tries to answer these questions for iterative high performance computing applications, showing the impact of both thresholds and load patterns on application performance and resource consumption. To accomplish this, we developed a reactive and PaaS-based elasticity model called AutoElastic and employed it over a private cloud to execute a numerical integration application. Here, we are presenting an analysis of best practices and possible optimizations regarding the elasticity and HPC pair. Considering the results, we observed that the maximum threshold influences the application time more than the minimum one. We concluded that threshold values close to 100% of CPU load are directly related to a weaker reactivity, postponing resource reconfiguration when its activation in advance could be pertinent for reducing the application runtime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la actualidad, el uso del Cloud Computing se está incrementando y existen muchos proveedores que ofrecen servicios que hacen uso de esta tecnología. Uno de ellos es Amazon Web Services, que a través de su servicio Amazon EC2, nos ofrece diferentes tipos de instancias que podemos utilizar según nuestras necesidades. El modelo de negocio de AWS se basa en el pago por uso, es decir, solo realizamos el pago por el tiempo que se utilicen las instancias. En este trabajo se implementa en Amazon EC2, una aplicación cuyo objetivo es extraer de diferentes fuentes de información, los datos de las ventas realizadas por las editoriales y librerías de España. Estos datos son procesados, cargados en una base de datos y con ellos se generan reportes estadísticos, que ayudarán a los clientes a tomar mejores decisiones. Debido a que la aplicación procesa una gran cantidad de datos, se propone el desarrollo y validación de un modelo, que nos permita obtener una ejecución óptima en Amazon EC2. En este modelo se tienen en cuenta el tiempo de ejecución, el coste por uso y una métrica de coste/rendimiento. Adicionalmente, se utilizará la tecnología de contenedores Docker para llevar a cabo un caso específico del despliegue de la aplicación.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The popularity of cloud computing has led to a dramatic increase in the number of data centers in the world. The ever-increasing computational demands along with the slowdown in technology scaling has ushered an era of power-limited servers. Techniques such as near-threshold computing (NTC) can be used to improve energy efficiency in the post-Dennard scaling era. This paper describes an architecture based on the FD-SOI process technology for near-threshold operation in servers. Our work explores the trade-offs in energy and performance when running a wide range of applications found in private and public clouds, ranging from traditional scale-out applications, such as web search or media streaming, to virtualized banking applications. Our study demonstrates the benefits of near-threshold operation and proposes several directions to synergistically increase the energy proportionality of a near-threshold server.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgical interventions are usually performed in an operation room; however, access to the information by the medical team members during the intervention is limited. While in conversations with the medical staff, we observed that they attach significant importance to the improvement of the information and communication direct access by queries during the process in real time. It is due to the fact that the procedure is rather slow and there is lack of interaction with the systems in the operation room. These systems can be integrated on the Cloud adding new functionalities to the existing systems the medical expedients are processed. Therefore, such a communication system needs to be built upon the information and interaction access specifically designed and developed to aid the medical specialists. Copyright 2014 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pervasive availability of connected devices in any industrial and societal sector is pushing for an evolution of the well-established cloud computing model. The emerging paradigm of the cloud continuum embraces this decentralization trend and envisions virtualized computing resources physically located between traditional datacenters and data sources. By totally or partially executing closer to the network edge, applications can have quicker reactions to events, thus enabling advanced forms of automation and intelligence. However, these applications also induce new data-intensive workloads with low-latency constraints that require the adoption of specialized resources, such as high-performance communication options (e.g., RDMA, DPDK, XDP, etc.). Unfortunately, cloud providers still struggle to integrate these options into their infrastructures. That risks undermining the principle of generality that underlies the cloud computing scale economy by forcing developers to tailor their code to low-level APIs, non-standard programming models, and static execution environments. This thesis proposes a novel system architecture to empower cloud platforms across the whole cloud continuum with Network Acceleration as a Service (NAaaS). To provide commodity yet efficient access to acceleration, this architecture defines a layer of agnostic high-performance I/O APIs, exposed to applications and clearly separated from the heterogeneous protocols, interfaces, and hardware devices that implement it. A novel system component embodies this decoupling by offering a set of agnostic OS features to applications: memory management for zero-copy transfers, asynchronous I/O processing, and efficient packet scheduling. This thesis also explores the design space of the possible implementations of this architecture by proposing two reference middleware systems and by adopting them to support interactive use cases in the cloud continuum: a serverless platform and an Industry 4.0 scenario. A detailed discussion and a thorough performance evaluation demonstrate that the proposed architecture is suitable to enable the easy-to-use, flexible integration of modern network acceleration into next-generation cloud platforms.