979 resultados para UASB reactors
Resumo:
Fuel elements of PWR type nuclear reactors consist of rod bundles, arranged in a square array, and held by spacer grids. The coolant flows, mainly, axially along the rods. Although such elements are laterally open, experiments are performed in closed type test sections, originating the appearance of subchannels with different geometries. In the present work, utilizing a test section of two bundles of 4x4 pins each, experiments were performed to determine the friction and the grid drag coefficients for the different subchannels and to observe the effect of the grids in the crossflow, in cases of inlet flow maldistribution.
Resumo:
In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed using electrically heated rods to simulate operational and accidental conditions of nuclear fuel rods. In the present work, it is performed a theoretical analysis of the drying and rewetting front propagation during a critical heat flux experiment, starting with the application of an electrical power step from steady state condition. After the occurrence of critical heat flux, the drying front propagation is predicted. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. Studies performed with various values of coolant mass flow rate show that this variable has more influence on the drying front velocity than on the rewetting one.
Resumo:
One of the main problems related to the transport and manipulation of multiphase fluids concerns the existence of characteristic flow patterns and its strong influence on important operation parameters. A good example of this occurs in gas-liquid chemical reactors in which maximum efficiencies can be achieved by maintaining a finely dispersed bubbly flow to maximize the total interfacial area. Thus, the ability to automatically detect flow patterns is of crucial importance, especially for the adequate operation of multiphase systems. This work describes the application of a neural model to process the signals delivered by a direct imaging probe to produce a diagnostic of the corresponding flow pattern. The neural model is constituted of six independent neural modules, each of which trained to detect one of the main horizontal flow patterns, and a last winner-take-all layer responsible for resolving when two or more patterns are simultaneously detected. Experimental signals representing different bubbly, intermittent, annular and stratified flow patterns were used to validate the neural model.
Resumo:
Microreactors have proven to be versatile tools for process intensification. Over recent decades, they have increasingly been used for product and process development in chemical industries. Enhanced heat and mass transfer in the reactors due to the extremely high surfacearea- to-volume ratio and interfacial area allow chemical processes to be operated at extreme conditions. Safety is improved by the small holdup volume of the reactors and effective control of pressure and temperature. Hydrogen peroxide is a powerful green oxidant that is used in a wide range of industries. Reduction and auto-oxidation of anthraquinones is currently the main process for hydrogen peroxide production. Direct synthesis is a green alternative and has potential for on-site production. However, there are two limitations: safety concerns because of the explosive gas mixture produced and low selectivity of the process. The aim of this thesis was to develop a process for direct synthesis of hydrogen peroxide utilizing microreactor technology. Experimental and numerical approaches were applied for development of the microreactor. Development of a novel microreactor was commenced by studying the hydrodynamics and mass transfer in prototype microreactor plates. The prototypes were designed and fabricated with the assistance of CFD modeling to optimize the shape and size of the microstructure. Empirical correlations for the mass transfer coefficient were derived. The pressure drop in micro T-mixers was investigated experimentally and numerically. Correlations describing the friction factor for different flow regimes were developed and predicted values were in good agreement with experimental results. Experimental studies were conducted to develop a highly active and selective catalyst with a proper form for the microreactor. Pd catalysts supported on activated carbon cloths were prepared by different treatments during the catalyst preparation. A variety of characterization methods were used for catalyst investigation. The surface chemistry of the support and the oxidation state of the metallic phase in the catalyst play important roles in catalyst activity and selectivity for the direct synthesis. The direct synthesis of hydrogen peroxide was investigated in a bench-scale continuous process using the novel microreactor developed. The microreactor was fabricated based on the hydrodynamic and mass transfer studies and provided a high interfacial area and high mass transfer coefficient. The catalysts were prepared under optimum treatment conditions. The direct synthesis was conducted at various conditions. The thesis represents a step towards a commercially viable direct synthesis. The focus is on the two main challenges: mitigating the safety problem by utilization of microprocess technology and improving the selectivity by catalyst development.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
Ydinvoimalaitosten vesikemian optimointi ja korroosionesto on välttämätöntä laitosten taloudellisen ja turvallisen käytön kannalta. Eri laitoksiin liittyvää vesikemiaa ja järjestelmissä havaittavia korroosion muotoja on tutkittu laajasti ja tutkitaan yhä edelleen. Monien prosessien ymmärtäminen vaatii usean eri tieteenalan osaamista, kuten kemiantekniikan, energiatekniikan sekä materiaalitekniikan. Tässä työssä kerrotaan yksinkertaistaen vesikemiaan ja korroosioon liittyviä prosesseja ja reaktioita. Työssä käsitellään kevytvettä jäähdytteenä sekä moderaattorina käyttävien ydinvoimalaitosten eri korroosiomuotoja sekä säteilyn vaikutusta näihin suoraan tai vesikemian kautta. Työssä kerrotaan korroosio- ja aktivoitumistuotteiden muodostumisesta ja kulkeutumisesta sekä näiden tuotteiden vaikutuksista laitosten toimintaan. Korroosion ja materiaalien aktivoitumisen pohjalta tarkastellaan kattavasti ydinvoimalaitosten tyypillisimpiä vesikemian muokkauskeinoja sekä korroosionhallintaa. Tärkeimpiin asioihin syvennytään hieman lähemmin. Tarkastelun kohteena ovat eniten käytetyt ydinvoimalaitokset, eli länsimaiset paine- ja kiehutusvesilaitokset sekä venäläisvalmisteiset VVER-laitokset. Tarkoituksena on ollut luoda tiivis tietopaketti opiskelijoiden käyttöön muun opintomateriaalin tueksi.
Resumo:
Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.
Resumo:
The decreasing fossil fuel resources combined with an increasing world energy demand has raised an interest in renewable energy sources. The alternatives can be solar, wind and geothermal energies, but only biomass can be a substitute for the carbon–based feedstock, which is suitable for the production of transportation fuels and chemicals. However, a high oxygen content of the biomass creates challenges for the future chemical industry, forcing the development of new processes which allow a complete or selective oxygen removal without any significant carbon loss. Therefore, understanding and optimization of biomass deoxygenation processes are crucial for the future bio–based chemical industry. In this work, deoxygenation of fatty acids and their derivatives was studied over Pd/C and TiO2 supported noble metal catalysts (Pt, Pt–Re, Re and Ru) to obtain future fuel components. The 5 % Pd/C catalyst was investigated in semibatch and fixed bed reactors at 300 °C and 1.7–2 MPa of inert and hydrogen–containing atmospheres. Based on extensive kinetic studies, plausible reaction mechanisms and pathways were proposed. The influence of the unsaturation in the deoxygenation of model compounds and industrial feedstock – tall oil fatty acids – over a Pd/C catalyst was demonstrated. The optimization of the reaction conditions suppressed the formation of by–products, hence high yields and selectivities towards linear hydrocarbons and catalyst stability were achieved. Experiments in a fixed bed reactor filled with a 2 % Pd/C catalyst were performed with stearic acid as a model compound at different hydrogen–containing gas atmospheres to understand the catalyst stability under various conditions. Moreover, prolonged experiments were carried out with concentrated model compounds to reveal the catalyst deactivation. New materials were proposed for the selective deoxygenation process at lower temperatures (~200 °C) with a tunable selectivity to hydrodeoxygenation by using 4 % Pt/TiO2 or decarboxylation/decarbonylation over 4 % Ru/TiO2 catalysts. A new method for selective hydrogenation of fatty acids to fatty alcohols was demonstrated with a 4 % Re/TiO2 catalyst. A reaction pathway and mechanism for TiO2 supported metal catalysts was proposed and an optimization of the process conditions led to an increase in the formation of the desired products.
Resumo:
This thesis concentrates on the validation of a generic thermal hydraulic computer code TRACE under the challenges of the VVER-440 reactor type. The code capability to model the VVER-440 geometry and thermal hydraulic phenomena specific to this reactor design has been examined and demonstrated acceptable. The main challenge in VVER-440 thermal hydraulics appeared in the modelling of the horizontal steam generator. The major challenge here is not in the code physics or numerics but in the formulation of a representative nodalization structure. Another VVER-440 specialty, the hot leg loop seals, challenges the system codes functionally in general, but proved readily representable. Computer code models have to be validated against experiments to achieve confidence in code models. When new computer code is to be used for nuclear power plant safety analysis, it must first be validated against a large variety of different experiments. The validation process has to cover both the code itself and the code input. Uncertainties of different nature are identified in the different phases of the validation procedure and can even be quantified. This thesis presents a novel approach to the input model validation and uncertainty evaluation in the different stages of the computer code validation procedure. This thesis also demonstrates that in the safety analysis, there are inevitably significant uncertainties that are not statistically quantifiable; they need to be and can be addressed by other, less simplistic means, ultimately relying on the competence of the analysts and the capability of the community to support the experimental verification of analytical assumptions. This method completes essentially the commonly used uncertainty assessment methods, which are usually conducted using only statistical methods.
Resumo:
Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.
Resumo:
The use of exact coordinates of pebbles and fuel particles of pebble bed reactor modelling becoming possible in Monte Carlo reactor physics calculations is an important development step. This allows exact modelling of pebble bed reactors with realistic pebble beds without the placing of pebbles in regular lattices. In this study the multiplication coefficient of the HTR-10 pebble bed reactor is calculated with the Serpent reactor physics code and, using this multiplication coefficient, the amount of pebbles required for the critical load of the reactor. The multiplication coefficient is calculated using pebble beds produced with the discrete element method and three different material libraries in order to compare the results. The received results are lower than those from measured at the experimental reactor and somewhat lower than those gained with other codes in earlier studies.
Resumo:
Fertilizer plant’s process waters contain high concentrations of nitrogen compounds, such as ammonium and nitrate. Phosphorus and fluorine, which originate from phosphoric acid and rock phosphate (apatite) used in fertilizer production, are also present. Phosphorus and nitrogen are the primary nutrients causing eutrophication of surface waters. At fertilizer plant process waters are held in closed internal circulation. In a scrubber system process waters are used for washing exhaust gases from fertilizer reactors and dry gases from granulation drums as well as for cooling down the fertilizer slurry in neutralization reactor. Solids in process waters are separated in an inclined plate settler by gravitational sedimentation. However, the operation of inclined plate settler has been inadequate. The aim of this thesis was to intensify the operation of inclined plate settler and thus the solids separation e.g. through coagulation and/or flocculation process. Chemical precipitation was studied to reduce the amount of dissolved species in process waters. Specific interest was in precipitation of nitrogen, phosphorus, and fluorine containing specimens. Amounts of phosphorus and fluorine were reduced significantly by chemical precipitation. When compared to earlier studies, annual chemical costs were almost eight times lower. Instead, nitrogen compounds are readily dissolved in water, thus being difficult to remove by precipitation. Possible alternative techniques for nitrogen removal are adsorption, ion exchange, and reverse osmosis. Settling velocities of pH adjusted and flocculated process waters were sufficient for the operation of inclined plate settler. Design principles of inclined plate settler are also presented. In continuation studies, flow conditions in inclined plate settler should be modelled with computational fluid dynamics and suitability of adsorbents, ion exchange resins, and membranes should be studied in laboratory scale tests.
Resumo:
O efluente do arroz parboilizado contém altas concentrações de fósforo. Um reator em batelada seqüencial (RBS) alimentado com efluente de reator UASB, operou com três fases anaeróbias e aeróbias e tempo de detenção de sólidos (TDS) de 25 d, 15 d, 10 d e 5d e tempo de reação (tR) de 1 d, 2 d e 3 d com e sem a adição de ácido acético (HAc). O reator operou com o efluente do equalizador em duas fases tratando com TDS de cinco dias. A eficiência foi calculada pela relação entre a massa de fósforo suspenso descartada e a massa total alimentada. O maior potencial de remoção de 46,14 mg ocorreu operando-se com uma fase anaeróbia e uma aeróbia com adição de HAc. O tR de um dia tem a maior possibilidade de aumento da eficiência pelo incremento do descarte de biomassa. A operação com TDS menores obtém as maiores eficiências de remoção. A capacidade de remoção é melhor utilizada com TDS de cinco dias. A maior eficiência (E=17,82%) foi obtida tratando o efluente do reator UASB com TDS de cinco dias, com duas fases, sem a adição HAc.
Resumo:
Ydinvoimaloissa käytetään toiminnallisia syvyyssuuntaisia puolustustasoja ydinturvallisuuden varmistamiseksi. Puolustuksen viidennessä ja viimeisessä tasossa pyritään lieventämään vakavan onnettomuuden ympäristövaikutuksia ja väestöön kohdistuvaa säteilyaltistusta. Suojelutoimien onnistumisen kannalta on tärkeää pystyä arvioimaan etukäteen radioaktiivisen päästön suuruus ja ajankohta mahdollisimman tarkasti. Tässä diplomityössä on esitelty radioaktiivisen päästön suuruuteen ja ajankohtaan vaikuttavat ilmiöt sekä niihin liittyvät merkittävät epävarmuudet. Ydinvoimalaitosten turvallisuusjärjestelmien osalta tarkastelun kohteena ovat suomalaiset käynnissä olevat reaktorit Olkiluoto 1 & 2 sekä Loviisa 1 & 2. Kaikissa Suomen laitoksissa on käytössä vakavan onnettomuuden hallintaan soveltuvia järjestelmiä ja toimintoja. Työssä etsittiin tietoa eri maiden radioaktiivisen päästön ennustamiseen käytettävistä ohjelmista. Eri mailla on eri toimintaperiaatteilla ja laajuuksilla toimivia ohjelmia. Osassa työkaluja käytetään ennalta laskettuja tuloksia ja osassa onnettomuustilanteet lasketaan onnettomuuden aikana. Lisäksi lähivuosina Euroopassa on tavoitteena kehittää yhteistyömaille yhteisiä valmiuskäyttöön soveltuvia ohjelmia. Työssä kehitettiin uusi valmiustyökalu Säteilyturvakeskuksen käyttöön Microsoft Excelin VBAohjelmoinnin avulla. Valmiustyökalu hyödyntää etukäteen laskettujen todennäköisyyspohjaisten analyysien onnettomuussekvenssejä. Tällöin valmiustilanteessa laitoksen tilanteen kehittymistä on mahdollista arvioida suojarakennuksen toimintakyvyn perusteella. Valmiustyökalu pyrittiin kehittämään mahdollisimman helppokäyttöiseksi ja helposti päivitettäväksi.
Resumo:
This study investigated the content of total phenolic compounds and antioxidant activity in fermented rice bran in order to evaluate the effect of solid state fermentation on these properties. The process was performed with the fungus Rhizopus oryzae CTT 1217 in tray reactors at 30 °C for 120 hours. Samples of fermented rice bran were collected every 24 hours. Antioxidant property was evaluated by the diphenyl-1-picrylhydrazyl radical scavenging method and through the inhibition of enzymatic oxidation and lipid peroxidation of olive oil. The methanol extract of the biomass obtained at 96 hours of fermentation inactivated 50% of free radical in 15 minutes. The same extract reduced the peroxide value in the olive oil by 57% after 30 days of storage. The aqueous extract of the biomass obtained at 120 hours was the most efficient inhibitor of the darkening reaction catalyzed by peroxidase.